THE CALCULATION OF CARDIAC OUTPUT AND EFFECTIVE PERIPHERAL RESISTANCE FROM BLOOD PRESSURE MEASUREMENTS WITH AN APPENDIX ON THE SIZE OF THE AORTA IN MAN

1935 ◽  
Vol 113 (2) ◽  
pp. 312-334 ◽  
Author(s):  
H. C. Bazett ◽  
F. S. Cotton ◽  
L. B. Laplace ◽  
J. C. Scott
2011 ◽  
Vol 301 (5) ◽  
pp. R1510-R1516 ◽  
Author(s):  
Matthew S. Ganio ◽  
R. Matthew Brothers ◽  
Rebekah A. I. Lucas ◽  
Jeffrey L. Hastings ◽  
Craig G. Crandall

Despite frequent reporting of blood pressure (BP) during profound passive heat stress, both with and without a hypotensive challenge, the method by which BP is measured often varies between laboratories. It is unknown whether auscultatory and finger BP measures accurately reflect intra-arterial BP during dynamic changes in cardiac output and peripheral resistance associated with the aforementioned conditions. The purpose of this investigation was to test the hypothesis that auscultatory BP measured at the brachial artery, and finger BP measured by the Penaz method, are valid measures of intra-arterial BP during a passive heat stress and a heat-stressed orthostatic challenge, via lower body negative pressure (LBNP). Absolute (specific aim 1) and the change in (specific aim 2) systolic (SBP), diastolic (DBP), and mean BPs (MBP) were compared at normothermia, after a core temperature increase of 1.47 ± 0.09°C, and during subsequent LBNP. Heat stress did not change auscultatory SBP (6 ± 11 mmHg; P = 0.16), but Penaz SBP (−22 ± 16 mmHg; P < 0.001) and intra-arterial SBP (−11 ± 13 mmHg P = 0.017) decreased. In contrast, DBP and MBP did not differ between methods throughout heat stress. Compared with BP before LBNP, the magnitude of the reduction in BP with all three methods was similar throughout LBNP ( P > 0.05). In conclusion, auscultatory SBP and Penaz SBP failed to track the decrease in intra-arterial SBP that occurred during the profound heat stress, while decreases in arterial BP during an orthostatic challenge are comparable between methodologies.


Author(s):  
Hans T. Versmold

Systemic blood pressure (BP) is the product of cardiac output and total peripheral resistance. Cardiac output is controlled by the heart rate, myocardial contractility, preload, and afterload. Vascular resistance (vascular hindrance × viscosity) is under local autoregulation and general neurohumoral control through sympathetic adrenergic innervation and circulating catecholamines. Sympathetic innovation predominates in organs receivingflowin excess of their metabolic demands (skin, splanchnic organs, kidney), while innervation is poor and autoregulation predominates in the brain and heart. The distribution of blood flow depends on the relative resistances of the organ circulations. During stress (hypoxia, low cardiac output), a raise in adrenergic tone and in circulating catecholamines leads to preferential vasoconstriction in highly innervated organs, so that blood flow is directed to the brain and heart. Catecholamines also control the levels of the vasoconstrictors renin, angiotensin II, and vasopressin. These general principles also apply to the neonate.


Hypertension ◽  
2018 ◽  
Vol 72 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Chloe Park ◽  
Abigail Fraser ◽  
Laura D. Howe ◽  
Siana Jones ◽  
George Davey Smith ◽  
...  

1988 ◽  
Vol 254 (4) ◽  
pp. H811-H815 ◽  
Author(s):  
D. G. Parkes ◽  
J. P. Coghlan ◽  
J. G. McDougall ◽  
B. A. Scoggins

The hemodynamic and metabolic effects of long-term (5 day) infusion of human atrial natriuretic factor (ANF) were examined in conscious chronically instrumented sheep. Infusion of ANF at 20 micrograms/h, a rate below the threshold for an acute natriuretic effect, decreased blood pressure by 9 +/- 1 mmHg on day 5, associated with a fall in calculated total peripheral resistance. On day 1, ANF reduced cardiac output, stroke volume, and blood volume, effects that were associated with an increase in heart rate and calculated total peripheral resistance and a small decrease in blood pressure. On days 4 and 5 there was a small increase in urine volume and sodium excretion. On day 5 an increase in water intake and body weight was observed. No change was seen in plasma concentrations of renin, arginine vasopressin, glucose, adrenocorticotropic hormone, or protein. This study suggests that the short-term hypotensive effect of ANF results from a reduction in cardiac output associated with a fall in both stroke volume and effective blood volume. However, after 5 days of infusion, ANF lowers blood pressure via a reduction in total peripheral resistance.


1993 ◽  
Vol 265 (5) ◽  
pp. R1132-R1140 ◽  
Author(s):  
N. B. Olivier ◽  
R. B. Stephenson

Open-loop baroreflex responses were evaluated in eight conscious dogs before and during congestive heart failure to determine the effects of failure on baroreflex control of blood pressure, heart rate, cardiac output, and total peripheral resistance. Heart failure was induced by rapid ventricular pacing. Baroreflex function was determined by calculation of the range and gain of the open-loop stimulus-response relationships for the effect of carotid sinus pressure on blood pressure, heart rate, cardiac output, and total peripheral resistance. The range and gain of blood pressure responses were substantially reduced as early as 3 days after induction of heart failure (161 +/- 6 to 99 +/- 8 mmHg and -2.7 +/- 0.3 to -1.5 +/- 0.1, respectively) and remained depressed for the 21 days of heart failure. This depression in baroreflex control of blood pressure was associated with similar depressions in reflex range and gain for heart rate (125 +/- 9 to 78 +/- 11 beats/min and -2.05 +/- 0.2 to -1.16 +/- 0.2 beats/min, respectively) and cardiac output (1.74 +/- 0.2 to 0.46 +/- 0.2 l/min and -0.81 +/- 0.02 to -0.027 +/- 0.008 l/min, respectively). The group-averaged range and gain for reflex control of vascular resistance were not altered by heart failure. In three dogs, discontinuation of rapid ventricular pacing led to resolution of heart failure within 7 days and partial restoration of the range and gain of reflex control of blood pressure. We conclude that heart failure reversibly depresses baroreflex control of blood pressure principally through a concurrent reduction in reflex control of cardiac output, whereas reflex control of vascular resistance is not consistently affected.


1963 ◽  
Vol 41 (1) ◽  
pp. 1949-1953 ◽  
Author(s):  
Margaret Beznák ◽  
P. Hacker

Subcutaneous injection of 40 mg/kg isoproterenol is followed within 2 minutes by a fall in blood pressure and peripheral resistance, by tachycardia, and by an increase in cardiac output. It seems likely that these hemodynamic changes are a consequence of a direct action of isoproterenol on the myocardium. Isoproterenol also causes a significant increase in the oxygen consumption of the rats. The increased oxygen demand of the tissues may play a role in maintaining the hemodynamic changes for periods of more than an hour after isoproterenol. Signs of histological damage in the myocardium begin to appear without affecting the function of the cardiovascular system, as measured by the tests used.


2001 ◽  
Vol 281 (3) ◽  
pp. H1040-H1046 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Debbie D. O'Leary ◽  
Richard L. Hughson

Arterial hypocapnia has been associated with orthostatic intolerance. Therefore, we tested the hypothesis that hypocapnia may be detrimental to increases in muscle sympathetic nerve activity (MSNA) and total peripheral resistance (TPR) during head-up tilt (HUT). Ventilation was increased ∼1.5 times above baseline for each of three conditions, whereas end-tidal Pco 2 (Pet CO2 ) was clamped at normocapnic (Normo), hypercapnic (Hyper; +5 mmHg relative to Normo), and hypocapnic (Hypo; −5 mmHg relative to Normo) conditions. MSNA (microneurography), heart rate, blood pressure (BP, Finapres), and cardiac output (Q, Doppler) were measured continuously during supine rest and 45° HUT. The increase in heart rate when changing from supine to HUT ( P < 0.001) was not different across Pet CO2 conditions. MSNA burst frequency increased similarly with HUT in all conditions ( P < 0.05). However, total MSNA and the increase in total amplitude relative to baseline (%ΔMSNA) increased more when changing to HUT during Hypo compared with Hyper ( P < 0.05). Both BP and Q were higher during Hyper than both Normo and Hypo (main effect; P < 0.05). Therefore, the MSNA response to HUT varied inversely with levels of Pet CO2 . The combined data suggest that augmented cardiac output with hypercapnia sustained blood pressure during HUT leading to a diminished sympathetic response.


1991 ◽  
Vol 261 (3) ◽  
pp. R677-R685 ◽  
Author(s):  
B. L. Brizzee ◽  
R. D. Russ ◽  
B. R. Walker

Experiments were performed to examine the potential role of circulating arginine vasopressin (AVP) on baroreflex sensitivity during hypotensive and nonhypotensive hemorrhage in the conscious rat. Animals were chronically instrumented for measurement of cardiac output, blood pressure, and heart rate (HR). Three potential stimuli for release of AVP were utilized: 1) rapid 20% arterial hemorrhage that resulted in hypotension, 2) nonhypovolemic hypotension induced by intravenous infusion of nitroprusside, and 3) nonhypotensive hemorrhage (rapid 10% arterial blood withdrawal). Hypotensive hemorrhage was associated with significant reductions in blood pressure, cardiac output, HR, and calculated total peripheral resistance, an increase in baroreflex (BRR) bradycardia in response to pressor infusions of phenylephrine, and a moderate elevation in circulating AVP. Prior intravenous administration of a specific V1-vasopressinergic antagonist augmented the hypotensive response to hemorrhage; however, neither V1- nor V2-blockade affected hemorrhage-induced augmentation of the BRR. Inducement of hypotension by infusion of nitroprusside did not alter subsequent BRR sensitivity. Finally, nonhypotensive hemorrhage was associated with an increase in resting HR and augmented BRR sensitivity. However, in contrast to hypotensive hemorrhage, either V1- or V2-antagonism attenuated the increase in BRR sensitivity seen with 10% hemorrhage. These data suggest that, although AVP may play a role in blood pressure maintenance via its direct vasoconstrictor actions during hypotensive hemorrhage, the observed augmentation of BRR sensitivity associated with severe blood loss is not attributable to a vasopressinergic mechanism activated by circulating AVP. However, blood-borne AVP may contribute to BRR sensitivity alterations in response to mild blood loss.


Sign in / Sign up

Export Citation Format

Share Document