histological damage
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 48)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel A. Reyna ◽  
Megumi Kishimoto-Urata ◽  
Shinji Urata ◽  
Tomoko Makishima ◽  
Slobodan Paessler ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for a pandemic affecting billions of people worldwide. Apart from the extreme global economic impact, the pandemic will likely have a lasting impact through long-term sequelae not yet fully understood. Fully understanding the mechanisms driving the various symptoms and sequelae of SARS-CoV-2 infection will allow for the eventual development of therapeutics to prevent or treat such life-altering symptoms. In this study, we developed a behavioral test of anosmia in SARS-CoV-2-infected hamsters. We find a moderately strong correlation between the level of anosmia and the score of histological damage within the olfactory epithelium. We also find a moderately strong correlation between the level of anosmia and the thickness of the olfactory epithelium, previously demonstrated to be severely damaged upon infection. Thus, this food-searching behavioral test can act as a simple and effective screening method in a hamster model for various therapeutics for SARS-CoV-2-related anosmia.


2021 ◽  
Author(s):  
Gerardo Rodriguez-Leon ◽  
Fernando Estremiana ◽  
Monica Miro ◽  
Carla Bettonica ◽  
Humberto Aranda ◽  
...  

Introduction: Preoperative gastric ischemic conditioning (IC) improves the outcome of esophageal replacement gastroplasty and is associated with low morbidity. However, when the stomach cannot be used for esophageal replacement, a colonic replacement is required. The study aim was to assess the viability of right colon and terminal ileum IC in a rat model, the histological damage/recovery sequence, and determine if neovascularization is a potential adaptive mechanism. Methods: The study was conducted in Rattus norvegicus with ileocolic vascular ligation. Seven groups of animals were established (six rats per group) with groups defined by the date of their post-IC euthanasia (+1, +3, +6, +10, +15, and +21 days). Comparisons were made with a sham group. Viability of the model was defined as <10% of transmural necrosis. The evaluation of histological damage used the Chiu score in hematoxylin and eosin sections of paraffin-embedded specimens with CD31 immunohistochemical assessment of neovascularization by the median of submucosal vessel counts in five high-magnification fields. Results: Transmural colon necrosis occurred in 1/36 animals (2.78%) with no animal demonstrating transmural ileal necrosis. The maximum damage was observed in the colon on +1 day post-IC (average Chiu score 1.67, P = 0.015), whereas in the ileum, it was on days +1, +3, and +6 (average Chiu score 1.5, 1.3, and 1.17; P = 0.015, 0.002, and 0.015, respectively). In the +21-day group, histological recovery was complete in the colon in four (66.7%) of the six animals and in the ileum in five (83.3%) of six animals. There were no significant differences in quantitative neovascularization in any of the groups when compared with the sham group or when comparisons were made between groups. Conclusions: The tested animal model for IC of the colon and terminal ileum appeared to be feasible. Histological damage was maximal between the 1st and 3rd day following IC, but by day 21, recovery was complete in two-thirds of the rats. There was no evidence in this preliminary IC model that would suggest neovascularization as an adaptive mechanism.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2756
Author(s):  
Marika Lanza ◽  
Alessia Filippone ◽  
Alessio Ardizzone ◽  
Giovanna Casili ◽  
Irene Paterniti ◽  
...  

Background: There is a growing realization that the gut–brain axis signaling is critical for maintaining the health and homeostasis of the Central Nervous System (CNS) and the intestinal environment. The role of Short-Chain Fatty Acids (SCFAs), such as Sodium Propionate (SP) and Sodium Butyrate (SB), has been reported to counteract inflammation activation in the central and Enteric Nervous System (ENS). Methods: In this study, we evaluated the role of the SCFAs in regulating the pathophysiology of migraine and correlated dysregulations in the gut environment in a mouse model of Nitroglycerine (NTG)-induced migraine. Results: We showed that, following behavioral tests evaluating pain and photophobia, the SP and SB treatments attenuated pain attacks provoked by NTG. Moreover, treatments with both SCFAs reduced histological damage in the trigeminal nerve nucleus and decreased the expression of proinflammatory mediators. Ileum evaluation following NTG injection reported that SCFA treatments importantly restored intestinal mucosa alterations, as well as the release of neurotransmitters in the ENS. Conclusions: Taken together, these results provide evidence that SCFAs exert powerful effects, preventing inflammation through the gut–brain axis, suggesting a new insight into the potential application of SCFAs as novel supportive therapies for migraine and correlated intestinal alterations.


Author(s):  
Anna Orekhova ◽  
Balazs Csaba Nemeth ◽  
Zsanett Jancso ◽  
Andrea Geisz ◽  
Dora Mosztbacher ◽  
...  

The activation peptide of mammalian trypsinogens typically contains a tetra-aspartate motif (positions P2-P5 in Schechter-Berger numbering) that inhibits autoactivation and facilitates activation by enteropeptidase. This evolutionary mechanism protects the pancreas from premature trypsinogen activation while allowing physiological activation in the gut lumen. Inborn mutations that disrupt the tetra-aspartate motif cause hereditary pancreatitis in humans. A subset of trypsinogen orthologs, including the mouse cationic trypsinogen (isoform T7), harbor an extended penta-aspartate motif (P2-P6) in their activation peptide. Here, we demonstrate that deletion of the extra P6 aspartate residue (D23del) increased autoactivation of T7 trypsinogen 3-fold. Mutagenesis of the P6 position in wild-type T7 trypsinogen revealed that bulky hydrophobic side-chains are preferred for maximal autoactivation and deletion-induced shift of the P7 Leu to P6 explains the autoactivation increase in the D23del mutant. Accordingly, removal of the P6 Leu by N-terminal truncation with chymotrypsin C reduced autoactivation of the D23del mutant. Homozygous T7D23del mice carrying the D23del mutation did not develop spontaneous pancreatitis and severity of cerulein-induced acute pancreatitis was comparable to that of C57BL/6N controls. However, sustained stimulation with cerulein resulted in markedly increased histological damage in T7D23del mice relative to C57BL/6N mice. Furthermore, when the T7D23del allele was crossed to a chymotrypsin-deficient background, the double-mutant mice developed spontaneous pancreatitis at an early age. Taken together, the observations argue that evolutionary expansion of the poly-aspartate motif in mouse cationic trypsinogen contributes to the natural defenses against pancreatitis and validate the role of the P6 position in autoactivation control of mammalian trypsinogens.


2021 ◽  
Vol 40 (12_suppl) ◽  
pp. S397-S405
Author(s):  
Pankaj Tripathi ◽  
Saeed Alshahrani

Background: Ursolic acid (UA) is a natural pentacyclic triterpenoid that is known for its benefits under several pathological conditions. Cisplatin (CP) is among the most preferred chemotherapeutic agents; however, its nephrotoxicity limits its clinical utility. Purpose: This study was aimed to determine the role of UA in the reduction of CP-induced nephrotoxicity and mitigation of pro-inflammatory cytokines and apoptosis in a rat model. Methodology: Male Wistar rats were randomized into vehicle control, CP (7.5 mg/kg), UA 10 mg/kg, and CP with UA 5 and 10 mg/kg groups. Kidney and blood samples were collected for assessment of renal function, measurement of pro-inflammatory cytokines, apoptosis markers, antioxidant activity, and tissue histology. Results: CP significantly increased the levels of serum Cr, BUN, and uric acid; it also induced histological damage reflecting the pathophysiology observed during nephrotoxicity. CP has also shown its pro-oxidant activity in kidney tissue because CP decreased the levels of GSH, SOD, and CAT; it increased the lipid peroxidation as measured by MDA content. In addition, CP significantly upregulated the activity of pro-inflammatory cytokines and expression of apoptotic markers, that is, there were increased levels of IL-1β, IL-6, TNF-α, caspase-3, and caspase-9. Two weeks of continuous treatment of UA showed significant recovery against CP-induced nephrotoxicity; UA decreased the levels of Cr, BUN, and uric acid and ameliorated histological damage. UA also downregulated the activities of IL-1β, IL-6, and TNF-α as well as expression of caspase-3 and caspase-9. Furthermore, CP-induced oxidative stress that was antagonized by UA—the levels of GSH, SOD, and CAT were significantly increased while MDA content was decreased. Conclusions: UA has a protective effect against CP-induced nephrotoxicity, which may be due to its antioxidant activity and mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis.


2021 ◽  
Author(s):  
Rachel Reyna ◽  
Megumi Kishimoto-Urata ◽  
Shinji Urata ◽  
Tomoko Makishima ◽  
Slobodan Paessler ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for a pandemic affecting millions of people worldwide. Apart from the extreme global economic impact, the pandemic will likely have a lasting impact through long-term sequelae not yet fully understood. Fully understanding the mechanisms driving the various symptoms and sequelae of SARS-CoV-2 infection will allow for the eventual development of therapeutics to prevent or treat such life-altering symptoms. In this study, we developed a behavioral test of anosmia in SARS-CoV-2-infected hamsters. We find a moderately strong correlation between the level of anosmia and the score of histological damage within the olfactory epithelium. We also find a moderately strong correlation between the level of anosmia and the thickness of the olfactory epithelium, previously demonstrated to be severely damaged upon infection. Thus, this food-searching behavioral test can act as a simple and effective screening method in a hamster model for various therapeutics for SARS-CoV-2-related anosmia.


2021 ◽  
Vol 22 (16) ◽  
pp. 8699
Author(s):  
Anne Breitrück ◽  
Markus Weigel ◽  
Jacqueline Hofrichter ◽  
Kai Sempert ◽  
Claus Kerkhoff ◽  
...  

Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 (“Control”, n = 6; “DSS”, n = 10; “FI5pp + DSS”, n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zheng Li ◽  
Zhiwen Liu ◽  
Hengcheng Lu ◽  
Wenni Dai ◽  
Junxiang Chen ◽  
...  

BackgroundAcute kidney injury (AKI), when occurring in diabetic kidney disease (DKD), is known to be more severe and difficult to recover from. Inflammation and apoptosis may contribute to the heightened sensitivity of, and non-recovery from, AKI in patients with DKD. Resolvin D1 (RvD1) is a potent lipid mediator which can inhibit the inflammatory response and apoptosis in many diseases. However, it has been reported that the RvD1 levels were decreased in diabetes, which may explain why DKD is more susceptible to AKI.MethodsFor animal experiments, diabetic nephropathy (DN) mice were induced by streptozotocin (STZ) injection intraperitoneally. Renal ischemia–reperfusion was used to induce AKI. Blood urea nitrogen (BUN) and serum creatinine were determined using commercial kits to indicate renal function. Renal apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Real-time polymerase chain reaction (PCR) was used to detect the marker of inflammatory response. Western blot was used to detect the expression of nuclear factor-κB (NF-κB)-related proteins. For clinical study, 12 cases diagnosed with DKD were enrolled in this study, and an equal number of non-diabetic renal disease patients (NDKD) were recruited as a control group. The serum RvD1 in DKD or NDKD patients were detected through an ELISA kit.ResultsIn clinical study, we found that the serum RvD1 levels were decreased in DKD patients compared to those in NDKD patients. Decreased serum RvD1 levels were responsible for the susceptibility to ischemic AKI in DKD patients. In animal experiments, both the serum RvD1 and renal ALX levels were downregulated. RvD1 treatment could ameliorate renal function and histological damage after ischemic injury in DN mice. RvD1 treatment also could inhibit the inflammatory response. Di-tert-butyl dicarbonate (BOC-2) treatment could deteriorate renal function and histological damage after ischemic injury in non-diabetic mice. RvD1 could inhibit the NF-κB activation and suppress inflammatory response mainly by inhibiting NF-κB signaling.ConclusionRvD1 attenuated susceptibility to ischemic AKI in diabetes by downregulating NF-κB signaling and inhibiting apoptosis. Downregulated serum RvD1 levels could be the crucial factor for susceptibility to ischemic AKI in diabetes.


Sign in / Sign up

Export Citation Format

Share Document