Effects of anesthetic agents on autoregulation of renal hemodynamics in the rat and dog

1976 ◽  
Vol 230 (3) ◽  
pp. 652-657 ◽  
Author(s):  
JD Conger ◽  
TJ Burke

Controversy has existed over apparent dissimilarities in the autoregulatory capacities of the rat and dog. A protocol was designed to evaluate both the effects of the anesthetic agents. Nembutal (used most commonly in dogs) and Inactin (most frequently employed in rats) and the species peculiarities of these two mammals on autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR). With Nembutal autoregulation of RBF was present in both experimental animals. Inactin impaired RBF autoregulation similarly in both species. With impaired RBF autoregulation similarly in both species. With either anesthetic GFR was autoregulated well in both rat and dog. Comparison of the two species revealed a greater RBF per gram kidney weight and a higher renal perfusion pressure (RPP) at which autoregulation of both hemodynamic parameters was lost in the rat. It is concluded from these studies that 1) the frequent use of Inactin in the rat in large part accounts for the observed lack of autoregulation of RBF in this animal and 2) renal hemodynamic responses are qualitatively similar in rat and dog when the same anesthetic agents are used.

1998 ◽  
Vol 9 (3) ◽  
pp. 346-354 ◽  
Author(s):  
V Gross ◽  
A Lippoldt ◽  
J Bohlender ◽  
M Bader ◽  
A Hansson ◽  
...  

The effect of acutely increasing renal perfusion pressure or extracellular fluid volume on renal medullary and cortical blood flow was examined in the low-renin deoxycorticosterone acetate (DOCA)-salt hypertension model in mice. A 50-mg DOCA tablet was implanted, and 1% saline was given as drinking water for 3 wk. Medullary and cortical blood flow were determined with laser-Doppler flowmetry, and whole-kidney blood flow was measured with a transit-time ultrasound flowprobe around the renal artery. In control mice, total renal blood flow ranged from 6.3 and 7.6 ml/min per g kidney weight and in DOCA-salt mice from 4.3 and 4.7 ml/min per g kidney weight, respectively, and was minimally affected as renal perfusion pressure was increased. Renal vascular resistance increased correspondingly. During stepwise increases in renal artery pressure from 90 to 140 mmHg, medullary blood flow progressively increased in control mice to 125% of baseline values, whereas cortical blood flow did not change. In DOCA-salt mice, increasing BP from 100 to 154 mmHg had no effect on either cortical or medullary blood flow. Urine flow and sodium excretion were lower in DOCA-salt mice than in controls and increased nearly to the same extent in both groups after volume expansion with isotonic saline. Total renal blood flow increased after saline loading, more in controls than in DOCA-salt mice. Increases in medullary blood flow after saline loading were up to 122% of baseline values in controls and demonstrated a significantly steeper slope than the 110% of baseline increases in DOCA-salt mice. Cortical blood flow, however, was not different between the groups. Thus, medullary blood flow is not as tightly autoregulated as cortical blood flow in normal mice. Natriuresis with acute volume loading is facilitated by increased medullary blood flow. In DOCA-salt mice, the medullary blood flow reaction to renal perfusion pressure increases is abolished, whereas flow increases with extracellular volume expansion are diminished. These results suggest that diminished pressure-natriuresis responses in DOCA-salt mice are related to perturbed medullary blood flow.


1979 ◽  
Vol 237 (6) ◽  
pp. F479-F482 ◽  
Author(s):  
C. E. Ott ◽  
R. C. Vari

Electromagnetic flow techniques and inulin clearance were used to determine the autoregulatory capabilities of the rabbit kidney in vivo. Renal blood flow was measured in 13 animals over a renal perfusion pressure range of 40–110 mmHg. Normal renal blood flow averaged 3.2 +/- 0.3 ml.min-1.g kidney-1 and was efficiently autoregulated above a renal artery pressure of 75 mmHg. For every 10 mmHg renal pressure change above 75 mmHg renal blood flow changed only 0.96%. Renal perfusion pressure was reduced from 102 +/- 3 to 74 +/- 2 mmHg in six animals. Over this pressure range glomerular filtration rate was not significantly decreased and averaged 4.2 +/- 0.5 ml/min at high pressure compared to 4.0 +/- 0.5 ml/min at low perfusion pressure. Results show that the rabbit kidney autoregulates renal blood flow and glomerular filtration rate efficiently above 75 mmHg. This range of autoregulation compares well with the autoregulatory range of the dog. The results also show that in the autoregulatory range the rabbit and the rat appear to autoregulate with equal efficiency but that the rabbit kidney begins to autoregulate at a low perfusion pressure than the average of approximately 100 mmHg usually found in the rat.


1999 ◽  
Vol 276 (1) ◽  
pp. R189-R196 ◽  
Author(s):  
Richard P. E. Van Dokkum ◽  
Magdalena Alonso-Galicia ◽  
Abraham P. Provoost ◽  
Howard J. Jacob ◽  
Richard J. Roman

The responses to changes in renal perfusion pressure (RPP) were compared in 12-wk-old fawn-hooded hypertensive (FHH), fawn-hooded low blood pressure (FHL), and August Copenhagen Irish (ACI) rats to determine whether autoregulation of renal blood flow (RBF) is altered in the FHH rat. Mean arterial pressure was significantly higher in conscious, chronically instrumented FHH rats than in FHL rats (121 ± 4 vs. 109 ± 6 mmHg). Baseline arterial pressures measured in ketamine-Inactin-anesthetized rats averaged 147 ± 2 mmHg ( n = 9) in FHH, 132 ± 2 mmHg ( n = 10) in FHL, and 123 ± 4 mmHg ( n = 9) in ACI rats. Baseline RBF was significantly higher in FHH than in FHL and ACI rats and averaged 9.6 ± 0.7, 7.4 ± 0.5, and 7.8 ± 0.9 ml ⋅ min−1 ⋅ g kidney wt−1, respectively. RBF was autoregulated in ACI and FHL but not in FHH rats. Autoregulatory indexes in the range of RPPs from 100 to 150 mmHg averaged 0.96 ± 0.12 in FHH vs. 0.42 ± 0.04 in FHL and 0.30 ± 0.02 in ACI rats. Glomerular filtration rate was 20–30% higher in FHH than in FHL and ACI rats. Elevations in RPP from 100 to 150 mmHg increased urinary protein excretion in FHH rats from 27 ± 2 to 87 ± 3 μg/min, whereas it was not significantly altered in FHL or ACI rats. The percentage of glomeruli exhibiting histological evidence of injury was not significantly different in the three strains of rats. These results indicate that autoregulation of RBF is impaired in FHH rats before the development of glomerulosclerosis and suggest that an abnormality in the control of renal vascular resistance may contribute to the development of proteinuria and renal failure in this strain of rats.


1987 ◽  
Vol 252 (1) ◽  
pp. R69-R72 ◽  
Author(s):  
L. L. Woods ◽  
H. L. Mizelle ◽  
J. E. Hall

Our purpose was to determine whether renal autoregulatory capability is retained in pregnancy despite the marked renal vasodilation that occurs at this time. Renal blood flow and glomerular filtration rate (GFR) were measured in anesthetized pregnant (22–27 days gestation) and nonpregnant rabbits during step reductions in renal perfusion pressure from control (100 +/- 3 mmHg) to 50 mmHg. Control renal blood flow and GFR were significantly higher in pregnant animals, averaging 65 +/- 5 and 13.1 +/- 1.1 ml/min, respectively, compared with 50 +/- 5 and 9.4 +/- 1.2 ml/min in nonpregnant rabbits. Filtration fraction was also significantly elevated in pregnant animals (0.33 +/- 0.02 vs. 0.27 +/- 0.01 in nonpregnant rabbits). During step reductions in renal perfusion pressure, renal blood flow was well autoregulated down to approximately 70 mmHg in both nonpregnant and pregnant animals, falling by only 9 +/- 4 and 12 +/- 5%, respectively. Likewise, GFR was also well autoregulated, falling by 10 +/- 2 and 8 +/- 3% in nonpregnant and pregnant animals, respectively, when perfusion pressure was reduced from 90 to 70 mmHg. These results suggest that renal autoregulation is preserved in pregnancy despite the fact that the renal circulation is already markedly vasodilated.


1996 ◽  
Vol 91 (4) ◽  
pp. 497-502 ◽  
Author(s):  
Toshiaki Kurashina ◽  
Kent A. Kirchner ◽  
Joey P. Granger ◽  
Ami R. Patel

1. Chronic Na+,K+-ATPase inhibition with ouabain induces hypertension in the rat. To examine the role of the kidney in this process, the effect of changes in renal perfusion pressure on glomerular filtration rate, renal blood flow and urinary sodium excretion were determined in rats treated intraperitoneally with ouabain (27.8 μg day−1 kg−1 body weight) or vehicle for 6 weeks. 2. After ouabain administration, baseline mean arterial pressure was significantly higher (P < 0.05) in ouabain-treated rats (151 ± 2 mmHg; n = 9) than in control rats (116 ± 4 mmHg; n = 8). 3. At equivalent renal perfusion pressures, glomerular filtration rate was significantly lower (P < 0.05) in ouabain-treated rats compared with control rats. Glomerular filtration rate was 721 ± 73μl/min at 150 mmHg, and fell significantly to 322 ± 64 μl/min at 100 mmHg. In the control group, glomerular filtration rate was well autoregulated. The glomerular filtration rate autoregulatory index was calculated to determine the ability to maintain glomerular filtration rate during changes in renal perfusion pressure (0 reflects perfect autoregulation; >1 reflects the absence of autoregulation). This index was greater in the ouabain group than in the control group (1.54 ± 0.2 compared with 0.29 ± 0.2; P < 0.05). Renal blood flow showed a similar pattern. 4. Absolute urinary sodium excretion rate was less in ouabain-treated rats than in control rats at equivalent renal perfusion pressures. The slope of the relationship between absolute urinary sodium excretion rate and renal perfusion pressure was greater (P < 0.05) in the control group than in the ouabain group (309.1 ± 57.1 compared with 82.1 ± 14.8 μmol min−1 mmHg−1). 5. Thus, chronic inhibition of Na+,K+-ATPase induces less efficient autoregulation of glomerular filtration rate and renal blood flow as well as a rightward shift in the pressure natriuresis relationship, such that a 25–30 mmHg higher renal perfusion pressure is necessary to excrete any given sodium load. These abnormalities may contribute to the development and maintenance of hypertension in this model.


1985 ◽  
Vol 69 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Edward J. Johns

1. Experiments were undertaken in pentobarbitone-anaesthetized cats to determine how reflex activation of the renal nerves altered the responsiveness of the kidney to release renin during reductions in renal perfusion pressure. Reflex activation of the renal nerves was achieved by reducing carotid sinus perfusion pressure by 30 mmHg, which increased systemic blood pressure. During this period renal perfusion pressure was regulated at control levels and neither renal blood flow nor glomerular filtration rate changed, but there was a significant decrease in sodium excretion and increase in renin secretion. Renal denervation abolished both these latter responses. 2. Renal perfusion pressure reduction, by 25-30 mmHg, had no effect on renal blood flow or glomerular filtration rate but significantly decreased sodium excretion and increased renin secretion. Simultaneous reduction of carotid sinus and renal perfusion pressures had no effect on renal blood flow or glomerular filtration rate, decreased sodium excretion, and the magnitude of the increase in renin secretion was significantly greater than that obtained with reduction in renal perfusion pressure alone. Renal denervation abolished the increase in renin secretion during these manoeuvres. 3. During atenolol administration, renal haemodynamics and sodium excretion responses to renal pressure reduction were similar to those obtained in the absence of the drug. Renin secretion was increased, but significantly less than in the absence of atenolol. Simultaneous carotid sinus and renal pressure reductions during atenolol administration had no effect on renal haemodynamics, reduced sodium excretion and increased renin secretion, the magnitude of which was significantly greater than that recorded with only renal pressure reduction in the presence of atenolol. 4. Direct electrical stimulation of the renal nerves, at frequencies which caused a 5-10% reduction in renal blood flow, did not change glomerular filtration rate, decreased sodium excretion by 30% and increased the rate of renin secretion twofold. In the presence of atenolol, such renal nerve stimulation reduced renal blood flow to the same degree, did not change filtration rate, decreased sodium excretion by 37% but did not change renin secretion. 5. These results show that the magnitude of the release of renin in response to renal pressure reduction is dependent on activity within the renal nerves, being blunted after denervation, and enhanced during reflex activation of the renal nerves.


1983 ◽  
Vol 65 (5) ◽  
pp. 533-538 ◽  
Author(s):  
Robert J. Anderson ◽  
Richard G. Pluss ◽  
William T. Pluss ◽  
Jon Bell ◽  
Gary G. Zerbe

1. Previous studies suggest that hypoxia and hypercapnic acidosis exert a renal nerve mediated adverse effect on renal haemodynamic function. We therefore examined the effect of hypoxia and hypercapnic acidosis on renal blood flow and glomerular filtration rate responses to lowering renal perfusion pressure from 125 to 75 mmHg in the anaesthetized dog. To study the role of renal nerves in these responses, paired innervated and denervated kidneys were studied in each animal. 2. Hypoxia (Po2 43 ± 3 mmHg) affected neither renal blood flow nor glomerular filtration rate responses to decreasing renal perfusion pressure. 3. Hypercapnic acidosis (Pco2 71 ±2 mmHg; pH 7.03 ± 0.01) significantly decreased both renal blood flow and glomerular filtration rate as renal perfusion pressure was lowered. This effect of hypercapnic acidosis could be abolished by renal denervation. 4. These findings suggest that hypercapnic acidosis results in renal nerve stimulation, which prevents the usual decrease in renal afferent arteriolar tone that occurs in response to lowering of renal perfusion pressure.


1994 ◽  
Vol 267 (1) ◽  
pp. R253-R259 ◽  
Author(s):  
D. M. Strick ◽  
M. J. Fiksen-Olsen ◽  
J. C. Lockhart ◽  
R. J. Roman ◽  
J. C. Romero

We studied the responses of total renal blood flow (RBF) and renal medullary blood flow (RMBF) to changes in renal perfusion pressure (RPP) within and below the range of renal autoregulation in the anesthetized dog (n = 7). To measure RMBF, we developed a technique in which the medulla is exposed by excising a section of infarcted cortex and a multiple optical fiber flow probe, connected to a laser-Doppler flowmeter, is placed on the medulla. At the baseline RPP of 120 +/- 1 mmHg, RBF was 2.58 +/- 0.33 ml.min-1.g perfused kidney wt-1, and RMBF was 222 +/- 45 perfusion units. RPP was then decreased in consecutive 20-mmHg steps to 39 +/- 1 mmHg. At 80 +/- 1 mmHg, RBF remained at 89 +/- 4% of the baseline value; however, RMBF had decreased significantly (P < 0.05) to 73 +/- 4% of its baseline value. The efficiency of autoregulation of RBF and of RMBF within the RPP range of 120 to 80 mmHg was determined by calculating an autoregulatory index (AI) for each parameter using the formula AI = (%delta blood flow)/(%delta RPP). An AI of 0 indicates perfect autoregulation, and an index of 1 indicates a system with a fixed resistance. The AI for RBF averaged 0.33 +/- 0.12 over this pressure range and showed a significantly greater (P < 0.05) autoregulatory ability than did the RMBF (0.82 +/- 0.13). Decreasing perfusion pressure < 80 mmHg produced significant decreases in both RBF and RMBF.(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 232 (2) ◽  
pp. F167-F172 ◽  
Author(s):  
E. H. Prosnitz ◽  
E. J. Zambraski ◽  
G. F. DiBona

Bilateral carotid artery occlusion results in an increase in mean arterial pressure, an increase in renal sympathetic nerve activity, and a redistribution of renal blood flow from inner to outer cortex. To elucidate the mechanism of the renal blood flow redistribution, carotid artery occlusion was performed in anesthetized dogs with the left kidney either having renal perfusion pressure maintained constant (aortic constriction) or having alpha-adrenergic receptor blockade (phenoxybenzamine); the right kidney of the same dog served to document the normal response. When renal perfusion pressure was maintained constant, renal blood flow distribution (microspheres) was unchanged by carotid artery occlusion. In the presence of renal alpha-adrenergic receptor blockade, carotid artery occlusion elicited the usual redistribution of renal blood flow from inner to outer cortex. The redistribution of renal blood flow observed after carotid artery occlusion is mediated by the increase in renal perfusion pressure rather than the increase in renal sympathetic nerve activity.


1988 ◽  
Vol 255 (3) ◽  
pp. F391-F396 ◽  
Author(s):  
J. D. Firth ◽  
A. E. Raine ◽  
J. G. Ledingham

The effect of alteration in renal perfusion pressure on the response of the isolated perfused rat kidney to concentrations of alpha-human atrial natriuretic peptide (ANP) within the pathophysiological range has been examined. At a perfusion pressure of 90 mmHg ANP concentrations of 50, 200, and 1,000 pmol/l were without effect on any parameter tested. At a perfusion pressure of 130 mmHg 50 pmol/l ANP produced an increase of 3.13 +/- 0.68 mumol/min in sodium excretion (UNa V), compared with a fall of 0.33 +/- 1.04 mumol/min in controls (P less than 0.02); fractional excretion of sodium (FENa) rose by 1.45 +/- 0.36% vs. -0.12 +/- 0.47% (P less than 0.05); glomerular filtration rate (GFR) was unchanged. At 200 and 1,000 pmol/l larger changes in UNa V and FENa were seen; only at 1,000 pmol/l was a significant effect on GFR observed. In contrast, frusemide (furosemide) at concentrations of 10 and 100 mumol/l was natriuretic at both 90 and 130 mmHg, with lesser absolute but greater proportional changes being seen at the lower pressure. It was concluded 1) the response of the isolated kidney to ANP is critically dependent on perfusion pressure, 2) at elevated levels of perfusion pressure the isolated kidney can respond to levels of ANP within the upper physiological and pathophysiological range.


Sign in / Sign up

Export Citation Format

Share Document