scholarly journals Impaired autoregulation of renal blood flow in the fawn-hooded rat

1999 ◽  
Vol 276 (1) ◽  
pp. R189-R196 ◽  
Author(s):  
Richard P. E. Van Dokkum ◽  
Magdalena Alonso-Galicia ◽  
Abraham P. Provoost ◽  
Howard J. Jacob ◽  
Richard J. Roman

The responses to changes in renal perfusion pressure (RPP) were compared in 12-wk-old fawn-hooded hypertensive (FHH), fawn-hooded low blood pressure (FHL), and August Copenhagen Irish (ACI) rats to determine whether autoregulation of renal blood flow (RBF) is altered in the FHH rat. Mean arterial pressure was significantly higher in conscious, chronically instrumented FHH rats than in FHL rats (121 ± 4 vs. 109 ± 6 mmHg). Baseline arterial pressures measured in ketamine-Inactin-anesthetized rats averaged 147 ± 2 mmHg ( n = 9) in FHH, 132 ± 2 mmHg ( n = 10) in FHL, and 123 ± 4 mmHg ( n = 9) in ACI rats. Baseline RBF was significantly higher in FHH than in FHL and ACI rats and averaged 9.6 ± 0.7, 7.4 ± 0.5, and 7.8 ± 0.9 ml ⋅ min−1 ⋅ g kidney wt−1, respectively. RBF was autoregulated in ACI and FHL but not in FHH rats. Autoregulatory indexes in the range of RPPs from 100 to 150 mmHg averaged 0.96 ± 0.12 in FHH vs. 0.42 ± 0.04 in FHL and 0.30 ± 0.02 in ACI rats. Glomerular filtration rate was 20–30% higher in FHH than in FHL and ACI rats. Elevations in RPP from 100 to 150 mmHg increased urinary protein excretion in FHH rats from 27 ± 2 to 87 ± 3 μg/min, whereas it was not significantly altered in FHL or ACI rats. The percentage of glomeruli exhibiting histological evidence of injury was not significantly different in the three strains of rats. These results indicate that autoregulation of RBF is impaired in FHH rats before the development of glomerulosclerosis and suggest that an abnormality in the control of renal vascular resistance may contribute to the development of proteinuria and renal failure in this strain of rats.

1999 ◽  
Vol 276 (3) ◽  
pp. R855-R863 ◽  
Author(s):  
Richard P. E. van Dokkum ◽  
Cheng-Wen Sun ◽  
Abraham P. Provoost ◽  
Howard J. Jacob ◽  
Richard J. Roman

The present study examined whether an abnormality in the myogenic response of renal arterioles that impairs autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) contributes to the development of renal damage in fawn-hooded hypertensive (FHH) rats. Autoregulation of whole kidney, cortical, and medullary blood flow and PGC were compared in young (12 wk old) FHH and fawn-hooded low blood pressure (FHL) rats in volume-replete and volume-expanded conditions. Baseline RBF, cortical and medullary blood flow, and PGCwere significantly greater in FHH than in FHL rats. Autoregulation of renal and cortical blood flow was significantly impaired in FHH rats compared with results obtained in FHL rats. Myogenically mediated autoregulation of PGC was significantly greater in FHL than in FHH rats. PGC rose from 46 ± 1 to 71 ± 2 mmHg in response to an increase in renal perfusion pressure from 100 to 150 mmHg in FHH rats, whereas it only increased from 39 ± 2 to 53 ± 1 mmHg in FHL rats. Isolated perfused renal interlobular arteries from FHL rats constricted by 10% in response to elevations in transmural pressure from 70 to 120 mmHg. In contrast, the diameter of vessels from FHH rats increased by 15%. These results indicate that the myogenic response of small renal arteries is altered in FHH rats, and this contributes to an impaired autoregulation of renal blood flow and elevations in PGC in this strain.


1979 ◽  
Vol 237 (6) ◽  
pp. F479-F482 ◽  
Author(s):  
C. E. Ott ◽  
R. C. Vari

Electromagnetic flow techniques and inulin clearance were used to determine the autoregulatory capabilities of the rabbit kidney in vivo. Renal blood flow was measured in 13 animals over a renal perfusion pressure range of 40–110 mmHg. Normal renal blood flow averaged 3.2 +/- 0.3 ml.min-1.g kidney-1 and was efficiently autoregulated above a renal artery pressure of 75 mmHg. For every 10 mmHg renal pressure change above 75 mmHg renal blood flow changed only 0.96%. Renal perfusion pressure was reduced from 102 +/- 3 to 74 +/- 2 mmHg in six animals. Over this pressure range glomerular filtration rate was not significantly decreased and averaged 4.2 +/- 0.5 ml/min at high pressure compared to 4.0 +/- 0.5 ml/min at low perfusion pressure. Results show that the rabbit kidney autoregulates renal blood flow and glomerular filtration rate efficiently above 75 mmHg. This range of autoregulation compares well with the autoregulatory range of the dog. The results also show that in the autoregulatory range the rabbit and the rat appear to autoregulate with equal efficiency but that the rabbit kidney begins to autoregulate at a low perfusion pressure than the average of approximately 100 mmHg usually found in the rat.


1994 ◽  
Vol 266 (2) ◽  
pp. F275-F282 ◽  
Author(s):  
A. P. Zou ◽  
J. D. Imig ◽  
M. Kaldunski ◽  
P. R. Ortiz de Montellano ◽  
Z. Sui ◽  
...  

The present study evaluated the role of endogenous P-450 metabolites of arachidonic acid (AA) on autoregulation of renal blood flow in rats. Whole kidney and cortical blood flows were well autoregulated when renal perfusion pressure was varied from 150 to 100 mmHg. Infusion of 17-octadecynoic acid (17-ODYA) into the renal artery (33 nmol/min) increased cortical and papillary blood flows by 12.6 +/- 2.5 and 26.5 +/- 4.6%, respectively. After 17-ODYA, autoregulation of whole kidney and cortical blood flows was impaired. Intrarenal infusion of miconazole (8 nmol/min) had no effect on autoregulation of whole kidney, cortical, or papillary blood flows. 17-ODYA (1 microM) inhibited the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) and 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) by renal preglomerular microvessels in vitro by 83.7 +/- 7.4% and 89.0 +/- 4.9%, respectively. Miconazole (1 microM) reduced the formation of EETs by 86.4 +/- 5.7%, but it had no effect on the production of 20-HETE. These results suggest that endogenous P-450 metabolites of AA, particularly 20-HETE, may participate in the autoregulation of renal blood flow.


1987 ◽  
Vol 252 (1) ◽  
pp. R69-R72 ◽  
Author(s):  
L. L. Woods ◽  
H. L. Mizelle ◽  
J. E. Hall

Our purpose was to determine whether renal autoregulatory capability is retained in pregnancy despite the marked renal vasodilation that occurs at this time. Renal blood flow and glomerular filtration rate (GFR) were measured in anesthetized pregnant (22–27 days gestation) and nonpregnant rabbits during step reductions in renal perfusion pressure from control (100 +/- 3 mmHg) to 50 mmHg. Control renal blood flow and GFR were significantly higher in pregnant animals, averaging 65 +/- 5 and 13.1 +/- 1.1 ml/min, respectively, compared with 50 +/- 5 and 9.4 +/- 1.2 ml/min in nonpregnant rabbits. Filtration fraction was also significantly elevated in pregnant animals (0.33 +/- 0.02 vs. 0.27 +/- 0.01 in nonpregnant rabbits). During step reductions in renal perfusion pressure, renal blood flow was well autoregulated down to approximately 70 mmHg in both nonpregnant and pregnant animals, falling by only 9 +/- 4 and 12 +/- 5%, respectively. Likewise, GFR was also well autoregulated, falling by 10 +/- 2 and 8 +/- 3% in nonpregnant and pregnant animals, respectively, when perfusion pressure was reduced from 90 to 70 mmHg. These results suggest that renal autoregulation is preserved in pregnancy despite the fact that the renal circulation is already markedly vasodilated.


1985 ◽  
Vol 69 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Edward J. Johns

1. Experiments were undertaken in pentobarbitone-anaesthetized cats to determine how reflex activation of the renal nerves altered the responsiveness of the kidney to release renin during reductions in renal perfusion pressure. Reflex activation of the renal nerves was achieved by reducing carotid sinus perfusion pressure by 30 mmHg, which increased systemic blood pressure. During this period renal perfusion pressure was regulated at control levels and neither renal blood flow nor glomerular filtration rate changed, but there was a significant decrease in sodium excretion and increase in renin secretion. Renal denervation abolished both these latter responses. 2. Renal perfusion pressure reduction, by 25-30 mmHg, had no effect on renal blood flow or glomerular filtration rate but significantly decreased sodium excretion and increased renin secretion. Simultaneous reduction of carotid sinus and renal perfusion pressures had no effect on renal blood flow or glomerular filtration rate, decreased sodium excretion, and the magnitude of the increase in renin secretion was significantly greater than that obtained with reduction in renal perfusion pressure alone. Renal denervation abolished the increase in renin secretion during these manoeuvres. 3. During atenolol administration, renal haemodynamics and sodium excretion responses to renal pressure reduction were similar to those obtained in the absence of the drug. Renin secretion was increased, but significantly less than in the absence of atenolol. Simultaneous carotid sinus and renal pressure reductions during atenolol administration had no effect on renal haemodynamics, reduced sodium excretion and increased renin secretion, the magnitude of which was significantly greater than that recorded with only renal pressure reduction in the presence of atenolol. 4. Direct electrical stimulation of the renal nerves, at frequencies which caused a 5-10% reduction in renal blood flow, did not change glomerular filtration rate, decreased sodium excretion by 30% and increased the rate of renin secretion twofold. In the presence of atenolol, such renal nerve stimulation reduced renal blood flow to the same degree, did not change filtration rate, decreased sodium excretion by 37% but did not change renin secretion. 5. These results show that the magnitude of the release of renin in response to renal pressure reduction is dependent on activity within the renal nerves, being blunted after denervation, and enhanced during reflex activation of the renal nerves.


1983 ◽  
Vol 65 (5) ◽  
pp. 533-538 ◽  
Author(s):  
Robert J. Anderson ◽  
Richard G. Pluss ◽  
William T. Pluss ◽  
Jon Bell ◽  
Gary G. Zerbe

1. Previous studies suggest that hypoxia and hypercapnic acidosis exert a renal nerve mediated adverse effect on renal haemodynamic function. We therefore examined the effect of hypoxia and hypercapnic acidosis on renal blood flow and glomerular filtration rate responses to lowering renal perfusion pressure from 125 to 75 mmHg in the anaesthetized dog. To study the role of renal nerves in these responses, paired innervated and denervated kidneys were studied in each animal. 2. Hypoxia (Po2 43 ± 3 mmHg) affected neither renal blood flow nor glomerular filtration rate responses to decreasing renal perfusion pressure. 3. Hypercapnic acidosis (Pco2 71 ±2 mmHg; pH 7.03 ± 0.01) significantly decreased both renal blood flow and glomerular filtration rate as renal perfusion pressure was lowered. This effect of hypercapnic acidosis could be abolished by renal denervation. 4. These findings suggest that hypercapnic acidosis results in renal nerve stimulation, which prevents the usual decrease in renal afferent arteriolar tone that occurs in response to lowering of renal perfusion pressure.


1977 ◽  
Vol 232 (2) ◽  
pp. F167-F172 ◽  
Author(s):  
E. H. Prosnitz ◽  
E. J. Zambraski ◽  
G. F. DiBona

Bilateral carotid artery occlusion results in an increase in mean arterial pressure, an increase in renal sympathetic nerve activity, and a redistribution of renal blood flow from inner to outer cortex. To elucidate the mechanism of the renal blood flow redistribution, carotid artery occlusion was performed in anesthetized dogs with the left kidney either having renal perfusion pressure maintained constant (aortic constriction) or having alpha-adrenergic receptor blockade (phenoxybenzamine); the right kidney of the same dog served to document the normal response. When renal perfusion pressure was maintained constant, renal blood flow distribution (microspheres) was unchanged by carotid artery occlusion. In the presence of renal alpha-adrenergic receptor blockade, carotid artery occlusion elicited the usual redistribution of renal blood flow from inner to outer cortex. The redistribution of renal blood flow observed after carotid artery occlusion is mediated by the increase in renal perfusion pressure rather than the increase in renal sympathetic nerve activity.


1972 ◽  
Vol 50 (3) ◽  
pp. 215-227
Author(s):  
L. J. Belleau ◽  
D. Mailhot

The mechanism of contralateral natriuresis subsequent to reduction of renal perfusion pressure was studied. In control dogs a drop in the renal perfusion pressure caused a very significant increase in the arterial and renal venous plasma renin activity, as well as a significant contralateral natriuresis. Systemic blood pressure increased along with contralateral intrarenal resistance. Glomerular filtration rate and renal blood flow did not change in the opposite kidney.In "renin-depleted" dogs a comparable drop in the renal perfusion pressure failed to stimulate renal venous and arterial plasma renin activity. Contralateral natriuresis increased significantly as well as the systemic blood pressure. In the absence of renin, intrarenal resistance of the opposite kidney did not change. Contralateral glomerular filtration rate and renal blood flow remained unchanged.During reduction of renal perfusion pressure, the most significant findings were: (1) absence of renin release despite the stimulation in renin-depleted dogs, (2) increase in contralateral resistance explained by the renin–angiotensin system, (3) systemic blood pressure increment despite renin release inhibition, and (4) the renin–angiotensin system not directly responsible for the contralateral natriuresis following a reduction in the renal perfusion pressure.Contralateral natriuresis cannot be explained by changes in glomerular filtration, renal blood flow, or intrarenal resistance. It is suggested that the rise in blood pressure or another factor, possibly neural or humoral, could explain the contralateral natriuresis.


1993 ◽  
Vol 264 (3) ◽  
pp. R578-R583 ◽  
Author(s):  
D. L. Mattson ◽  
S. Lu ◽  
R. J. Roman ◽  
A. W. Cowley

The present study examined the autoregulation of blood flow in different regions of the renal cortex and medulla in volume-expanded or hydropenic anesthetized rats. Blood flow was measured in the whole kidney by electromagnetic flowmetry, in the superficial cortex with implanted fibers and external probes for laser-Doppler flowmetry, and in the deep cortex and inner and outer medulla with implanted fibers for laser-Doppler flowmetry. At renal perfusion pressure > 100 mmHg, renal blood flow, superficial cortical blood flow, and deep cortical blood flow were all very well autoregulated in both volume-expanded and hydropenic rats. Inner and outer medullary blood flow were also well autoregulated in hydropenia, but blood flow in these regions was very poorly autoregulated in volume-expanded animals. As renal perfusion pressure was decreased below 100 mmHg in volume-expanded and hydropenic animals, renal blood flow, superficial and deep cortical blood flow, and inner and outer medullary blood flow all decreased. The results of these experiments demonstrate that blood flow in both the inner and outer portions of the renal medulla of the kidney is poorly autoregulated in volume-expanded rats but well autoregulated in hydropenic animals. In contrast, blood flow in all regions of the renal cortex is well autoregulated in both volume-expanded and hydropenic animals. These results suggest that changes in resistance in the postglomerular circulation of deep nephrons are responsible for the poor autoregulation of medullary blood flow in volume expansion despite well autoregulated cortical blood flow.


Sign in / Sign up

Export Citation Format

Share Document