Mechanism of maleic acid-induced glucosuria in dog kidney

1976 ◽  
Vol 231 (4) ◽  
pp. 1024-1032 ◽  
Author(s):  
M Silverman ◽  
L Huang

The multiple indicator-dilution technique in vivo and isolated brush-border membranes in vitro have been used to explore the mechanism of maleic acid-induced glucosuria in dog kidney. The interaction of D-glucose with the antiluminal membrane from the peritubular fluid surface is unaltered. It is demonstrated that alpha-methyl-D-glucoside (alpha MG) enters and exits from the proximal tubular cell only across the brush-border membrane. Then using alphaMG as a reference indicator, it is shown that maleic acid does not cause complete inhibition of D-glucose interaction with the antiluminal membrane from the cytoplasmic surface. The binding of [3H]phlorizin both in vivo and in vitro is not affected by prior administration of maleic acid, indicating that D-glucose interaction with the outside surface of the brush border is also not affected by maleic acid. The data are therefore consistent with the concept that maleic acid-induced glucosuria is due either to i) partial inhibition of D-glucose movement from cytoplasm across the antiluminal membrane into the blood, ii) stimulated movement back across the brush-border membrane into urine, or iii) a combination of the two effects.

1984 ◽  
Vol 247 (5) ◽  
pp. E616-E624 ◽  
Author(s):  
M. R. Hammerman ◽  
S. Rogers ◽  
V. A. Hansen ◽  
J. R. Gavin

Induction of hyperinsulinemia in dogs results in enhanced reabsorption of Pi from glomerular filtrate in the renal proximal tubule. To determine whether this may be a direct action of insulin mediated by altered transport characteristics of the proximal tubular brush border membrane, we measured Na+-dependent 32Pi transport in brush border membrane vesicles prepared from isolated proximal tubular segments originating from dog kidney that had been incubated with or without insulin. Specific high affinity binding sites for insulin were detected in proximal tubular segments. Increased initial rates (15 s) of Na+-dependent 32Pi transport were measured in brush border vesicles prepared from segments that had been incubated with insulin. This effect of insulin was concentration dependent over the range of 10(-10) to 10(-6) M insulin. These studies demonstrate the feasibility of using brush border vesicles prepared from proximal tubular segments to study solute transport. Our findings suggest that insulin-induced increased Pi reabsorption in the proximal tubule is mediated by a direct action of insulin on the proximal tubular cell, which results in increased Na+-Pi cotransport across the brush border membrane.


1986 ◽  
Vol 64 (5) ◽  
pp. 568-574 ◽  
Author(s):  
David D. Maenz ◽  
G. W. Forsyth

Cholera toxin is very well characterized in terms of the activation of adenylate cyclase. In some systems, however, this cyclase activation does not seem to account for all of the physiological responses to the toxin. On the premise that cholera toxin may also exert effects through other second messenger compounds we have studied the effect of cholera toxin on the rate of Ca2+ movement across the membrane of intestinal brush border vesicles. Increasing concentrations of cholera toxin progressively accelerated the passive uptake of Ca2+ into, and the efflux of Ca2+ from, an osmotically active space in brush border membrane vesicles. This effect of cholera toxin was saturable by excess Ca2+ and was relatively specific, as the toxin did not affect vesicle permeability to an uncharged polar solute. The toxin had two high affinity Ca2+ binding sites on the A subunit as measured by equilibrium dialysis. Ca2+ transport facilitated by cholera toxin was temperature dependent, required the holotoxin, and could be inhibited by preincubation of the toxin with excess free ganglioside GM1.This increased rate of Ca2+ influx caused by the in vitro addition of cholera toxin to brush border membrane vesicles may have physiological significance as it was comparable to rates observed with the Ca ionophore A23187. Similar effects occurring in vivo could permit cholera toxin to increase cytoplasmic Ca2+ concentrations and to produce accompanying second messenger effects.


1978 ◽  
Vol 14 (3) ◽  
pp. 236-244 ◽  
Author(s):  
Harriet S. Tenenhouse ◽  
Charles R. Scriver ◽  
Roderick McInnes ◽  
Francis H. Glorieux

1985 ◽  
Vol 249 (6) ◽  
pp. F948-F955 ◽  
Author(s):  
S. A. Kempson ◽  
S. T. Turner ◽  
A. N. Yusufi ◽  
T. P. Dousa

Previous studies showed that an increase in NAD+ content in renal cortex in vivo was accompanied by specific inhibition of Na+-dependent inorganic phosphate (Pi) transport across the renal brush border membrane (BBM). Further, in vitro addition of NAD+ to isolated renal BBM vesicles specifically inhibited Na+ gradient-dependent transport of Pi. The present study examined some aspects of the mechanism of this inhibition by NAD+ in vitro and in vivo. When NAD+ was increased in vivo by nicotinamide injection, the apparent Vmax was decreased, but the apparent Km was not different, indicating apparent noncompetitive inhibition. In the presence of 0.3 mM NAD+ added in vitro, the apparent Km for Na+-dependent Pi transport by BBM vesicles was increased, whereas the apparent Vmax was unchanged, indicating apparent competitive inhibition. These changes in apparent Km and apparent Vmax were identical when Pi uptake was measured either at 30-s or at 5-s (the initial rate) incubation times. Inhibition of Pi transport by BBM vesicles in vitro was due primarily to the action of intact added NAD+, although there may be some contribution by isotope dilution due to Pi released from NAD+ by enzymatic hydrolysis. Although in vitro inhibition of Pi transport by added NAD+ was reversed by washing the BBM, the inhibition due to increased NAD+ in vivo persisted after extensive washing of the isolated BBM. The specificity of the inhibitory effect of NAD+ in vivo was indicated by the finding that changes in renal cortical content of ATP or Pi, evoked by loading with glycerol or fructose, did not change BBM transport of Pi.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 251 (5) ◽  
pp. F889-F896
Author(s):  
B. S. Levine ◽  
J. A. Kraut ◽  
D. R. Mishler ◽  
P. W. Crooks

Prolonged metabolic acidosis is associated with depressed phosphate (Pi) uptake by the brush-border membrane (BBM) of the proximal tubule. To examine if changes in systemic pH underlie this inhibition, we measured Pi transport by renal cortical BBM from thyroparathyroidectomized rats with respiratory or metabolic acidosis of 1 or 3 h, respectively, and in appropriate controls. Also, Pi transport was measured in BBM prepared using tissue slices from nonacidotic rats that were preincubated for 20 or 45 min at either pH 6.9 (HCO3 = 10 mM, CO2 = 10%) or 7.4 (HCO3 = 10 mM, CO2 = 2.5%). Despite comparable acidemia (pH 7.06 +/- 0.05 with respiratory acidosis and 7.10 +/- 0.03 with metabolic acidosis), Na-dependent Pi uptake at 5 s incubation was reduced by 15.2 +/- 3.5% with respiratory acidosis compared with paired controls. It was not altered with metabolic acidosis. Vmax in respiratory acidosis (1.2 nmol X mg protein-1 X 5 s-1) was less than in controls (1.6); Kt was similar in both groups. 22Na transport and Na-dependent glucose transport were unchanged. Plasma phosphorus (P) increased from 8.75 +/- 0.35 mg/dl to 12.42 +/- 1.9 with respiratory acidosis. Therefore BBM vesicles transport was measured in controls after plasma P was raised. Under these conditions, Pi transport was similar to that with respiratory acidosis. Also Pi transport by BBM was unchanged when tissue slices were preincubated in vitro at high CO2 concentrations for 20 or 45 min. Thus respiratory acidosis specifically inhibits Na-dependent Pi transport by decreasing the number or rate of the BBM Pi carrier.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (4) ◽  
pp. G586-G594
Author(s):  
P. K. Dudeja ◽  
R. K. Wali ◽  
J. M. Harig ◽  
T. A. Brasitus

In the present experiments, selective quenching by trinitrophenyl groups as well as steady-state fluorescence polarization and differential polarized phase fluorescence techniques, using three different lipid soluble fluorophores, were used to directly examine the fluidity of the exofacial and cytofacial leaflets of rat small intestinal brush-border membranes. These studies revealed that the fluidity of the exofacial hemileaflet was greater than the cytofacial hemileaflet. Differences in the distribution of phosphatidylcholine and phosphatidylethanolamine, as assessed by phospholipase A2 treatment and trinitrophenylation of aminophospholipids, were, at least partially, responsible for the asymmetrical fluidity of the hemileaflets. Moreover, in vitro addition of benzyl alcohol (final concn 25 mM) preferentially fluidized the exofacial leaflet and concomitantly decreased leucine aminopeptidase activity but did not affect the activities of maltase, sucrase, alkaline phosphatase, or gamma-glutamyltranspeptidase. In vivo addition of the membrane-mobility agent 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanate] (A2C) (final concn 7.5 microM) preferentially fluidized the cytofacial leaflet and increased Na(+)-gradient-dependent D-glucose transport but not Na(+)-gradient-dependent L-leucine transport.


1990 ◽  
Vol 64 (3) ◽  
pp. 733-741 ◽  
Author(s):  
A. J. Turnbull ◽  
P. Blakeborough ◽  
R. P. H. Thompson

Intestinal brush-border-membrane vesicles were prepared from the porcine small bowel by magnesium precipitation and differential centrifugation, and were functionally intact. The influence of dietary ligands on 65Zn uptake was determined using a 65Zn concentration of 5 μm, an incubation time of 1 min and a reaction temperature of 27°, with a rapid filtration technique. At this low Zn concentration the addition of an excess of folate, histidine or glucose had no effect on Zn uptake. Addition of picolinate, citrate and phytate to the incubation medium significantly reduced Zn uptake at all concentrations of ligand examined. Any inhibitory effects of folic acid in vivo may thuss be due to a mucosal rather than lumen interaction. Those ligands inhibiting absorption may have done so through the formation of Zn-ligand complexes, which are either insoluble, or which reduce the binding of Zn to its mucosal receptor. This in vitro model of Zn absorption is useful for comparing the effects of potential Zn-binding ligands in the diet.


1965 ◽  
Vol 209 (2) ◽  
pp. 253-263 ◽  
Author(s):  
Francis P. Chinard ◽  
Carl A. Goresky ◽  
Theodore Enns ◽  
Mary F. Nolan ◽  
R. Winifred House

Outflow patterns of T-1824, urea, thiourea, and creatinine have been determined in the dog kidney in vivo and in situ as a function of the arterial hematocrit by means of the multiple indicator-dilution technique. The mean transit times of T-1824, urea, and creatinine decrease and converge as the hematocrit decreases. The outflow patterns of urea are anomalous: a) there is precession of urea over creatinine and thiourea; b) the transit times of urea are shorter than those of creatinine and thiourea; c) the recoveries of urea are greater than those of creatinine at normal and high hematocrit values. Thiourea has a longer equilibration time with red cells than urea. Prior incubation of thiourea with red cells results in precession of thiourea over urea. These results are considered evidence of transient trapping of urea in red cells during their passage through the glomerular capillaries. The similarity of the urea outflow curves to curves of substances known to participate in a membrane carrier transport system by the tubule cells from the antiluminal side suggest that urea may participate in a similar system.


1977 ◽  
Vol 232 (5) ◽  
pp. F455-F460
Author(s):  
M. Silverman

The pulse-injection multiple-indicator-dilution technique in vivo has been used to investigate bidirectional sugar interaction with the antiluminal surface of the nephron in dog kidney. Simultaneous renal vein and urine outflow curves were obtained for radiolabeled sugars known to interact with the antiluminal surface. The following sugars were tested relative to T-1824 albumin (plasma reference) and creatinine (extracellular reference) under conditions of high-dose phlorizin preloading (75–225 mg/kg): D-glucose, D-xylose, D-fucose, D-mannose, D-galactose, L-arabinose, myoinositol, and D-fructose. The results indicate that as the plasma concentration of phlorizin increases there is, first, a partial inhibition of sugar interaction at the antiluminal membrane so that only unidirectional uptake of sugar from blood to tubular cell is observed, followed by complete inhibition of sugar interaction at the peritubular face of the antiluminal membrane, resulting in superposition of sugar and creatinine curves in the renal vein effluent. Two possible interpretations exist. i) Phlorizin exerts its inhibitory action successively at the cytoplasmic and then at the peritubular face of the antiluminal membrane. Moreover, since all of the sugar substrates are inhibited by phlorizin, the data suggest that the sugar-membrane interaction takes place at a common site at the level of the proximal tubule. ii) Alternatively, the action of phlorizin could result from a metabolic inhibitory effect affecting multiple sugar transport systems at the antiluminal membrane.


Sign in / Sign up

Export Citation Format

Share Document