zn uptake
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 48)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Louisa Stewart ◽  
YoungJin Hong ◽  
Isabel Holmes ◽  
Samantha Firth ◽  
Jack Bolton ◽  
...  

The family of human salivary histidine-rich peptides known as histatins bind zinc (Zn) and copper (Cu), but whether they contribute to nutritional immunity by influencing Zn and/or Cu availability has not been examined. We hypothesised that histatin-5 (Hst5) limits Zn availability (and promotes bacterial Zn starvation) and/or raises Cu availability (and promotes bacterial Cu poisoning). To test this hypothesis, Group A Streptococcus (GAS), which colonises the human oropharynx, was used as a model bacterium. Contrary to our hypothesis, Hst5 did not strongly influence Zn availability. This peptide did not induce expression of Zn uptake genes in GAS, nor did it suppress growth of an ΔadcAI mutant strain that is impaired in Zn uptake. Equilibrium competition measurements confirmed that Hst5 binds Zn weakly and does not compete with the high-affinity Zn uptake protein AdcAI for binding Zn. By contrast, Hst5 bound Cu with a high affinity and strongly influenced Cu availability. However, contrary to our hypothesis, Hst5 did not promote Cu toxicity. Instead, this peptide suppressed expression of Cu-inducible genes in GAS, stopped intracellular accumulation of Cu, and rescued growth of a ΔcopA mutant strain that is impaired in Cu efflux in the presence of added Cu. These findings led us to propose a new role for Hst5 and salivary histatins as major Cu buffers in saliva that reduce the potential negative effects of Cu exposure to microbes. We speculate that histatins promote oral and oropharyngeal health by contributing to microbial homeostasis in these host niches.


2022 ◽  
Vol 1 ◽  
Author(s):  
Viabhav Kumar Upadhayay ◽  
Ajay Veer Singh ◽  
Amir Khan

A contemporary approach to bacterially mediated zinc (Zn) biofortification offers a new dimension in the crop improvement program with better Zn uptake in plants to curb Zn malnutrition. The implication of Zn solubilizing bacteria (ZSB) represents an inexpensive and optional strategy for Zn biofortification, with an ultimate green solution to enlivening sustainable agriculture. ZSB dwelling in the rhizospheric hub or internal plant tissues shows their competence to solubilize Zn via a variety of strategies. The admirable method is the deposition of organic acids (OAs), which acidify the surrounding soil environment. The secretion of siderophores as a metal chelating molecule, chelating ligands, and the manifestation of an oxidative–reductive system on the bacterial cell membrane are further tactics of bacterially mediated Zn solubilization. The inoculation of plants with ZSB is probably a more effective tactic for enhanced Zn translocation in various comestible plant parts. ZSB with plant growth-enhancing properties can be used as bioelicitors for sustainable plant growth via the different approaches that are crucial for plant health and its productivity. This article provides an overview of the functional properties of ZSB-mediated Zn localization in the edible portions of food crops and provides an impetus to explore such plant probiotics as natural biofortification agents.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jaime Bautista-Diaz ◽  
Oscar Cruz-Alvarez ◽  
Ofelia Adriana Hernández-Rodríguez ◽  
Esteban Sánchez-Chávez ◽  
Juan Luis Jacobo-Cuellar ◽  
...  

Abstract The green bean (Phaseolus vulgaris L.) is a very widely grown food crop that contributes significantly to human dietary needs in many countries due to its high content of protein. This study evaluates foliar applications of ZnSO4 versus that of zinc oxide nanoparticles (ZnO NPs) to leaves of the green bean cv. ‘Strike’ and records the plant responses in terms of Zn uptake and concentrations of photosynthetic pigments and bioactive compounds. The experiment was conducted under greenhouse conditions in Chihuahua, Mexico, with a completely randomised experimental design with 10 replicates. The two treatments were foliar applications of either an aqueous solution of ZnSO4 or an aqueous suspension of ZnO NPs (both 150 mg · L−1). The application of ZnO NPs significantly increased concentrations of Zn2+ in the leaflets, roots, stems and pods of chlorophylls a and b (values 15.40 μg · g−1 and 11.64 μg · g−1, respectively). Sucrose concentration was also increased by Zn2+ applications, but no differences were found in total phenols (TP), total flavonoids (TFl) or antioxidant capacity (AC). In the pods and seeds, Zn2+ application left sucrose and TFl concentrations unchanged, but the TP increase was significant. The AC was affected by both zinc sources and only in the pods. The applications of ZnSO4 or ZnO NPs significantly increased the biomass accumulation (79.10 g · p−1 and 84.70 g · p−1 DW) and yield (55.64 g · p−1 and 53.80 g · p−1 FW). These results suggest that the application of ZnO NPs could represent a worthwhile biofortification strategy in the commercial production of green bean cv. ‘Strike’.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianqin Xu ◽  
Xuejie Wang ◽  
Huaqing Zhu ◽  
Futong Yu

Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li Tang ◽  
Jiayu Dong ◽  
Longtao Tan ◽  
Zhongying Ji ◽  
Yaokui Li ◽  
...  

AbstractCadmium (Cd)-contaminated rice is a serious issue affecting food safety. Understanding the molecular regulatory mechanisms of Cd accumulation in rice grains is crucial to minimizing Cd concentrations in grains. We identified a member of the low-affinity cation transporter family, OsLCT2 in rice. It was a membrane protein. OsLCT2 was expressed in all tissues of the elongation and maturation zones in roots, with the strongest expression in pericycle and stele cells adjacent to the xylem. When grown in Cd-contaminated paddy soils, rice plants overexpressing OsLCT2 significantly reduced Cd concentrations in the straw and grains. Hydroponic experiment demonstrated its overexpression decreased the rate of Cd translocation from roots to shoots, and reduced Cd concentrations in xylem sap and in shoots of rice. Moreover, its overexpression increased Zn concentrations in roots by up-regulating the expression of OsZIP9, a gene responsible for Zn uptake. Overexpression of OsLCT2 reduces Cd accumulation in rice shoots and grains by limiting the amounts of Cd loaded into the xylem and restricting Cd translocation from roots to shoots of rice. Thus, OsLCT2 is a promising genetic resource to be engineered to reduce Cd accumulation in rice grains.


Author(s):  
Yingjie Wu ◽  
Susana S. Santos ◽  
Mette Vestergård ◽  
Ana M. Martín González ◽  
Luyao Ma ◽  
...  

2021 ◽  
Author(s):  
Benjamin Costerousse ◽  
Joel Quattrini ◽  
Roman Grüter ◽  
Emmanuel Frossard ◽  
Cécile Thonar

Abstract Purpose Green manuring can increase the plant available fraction of zinc (Zn) in soil, making it a potential approach to increase wheat Zn concentrations and fight human Zn deficiency. We tested whether green manure increases the ability of both the native soil bacteria and inoculated Zn solubilizing bacteria (ZSB) to mobilize Zn. Methods Wheat was grown in a pot experiment with the following three factors (with or without); (i) clover addition; (ii) soil x-ray irradiation (i.e. elimination of the whole soil biota followed by re-inoculation with the native soil bacteria); and (iii) ZSB inoculation. The incorporation of clover in both the irradiated and the ZSB treatments allowed us to test green manure effects on the mobilization of Zn by indigenous soil bacteria as well as by inoculated strains. Results Inoculation with ZSB did neither increase soil Zn availability nor wheat Zn uptake. The highest soil Zn availabilities were found when clover was incorporated, particularly in the irradiated soils (containing only soil bacteria). This was partly associated with the stimulation of bacterial activity during the decomposition of the incorporated green manure. Conclusion The results support that the activity of soil bacteria is intimately involved in the mobilization of Zn following the incorporation of green manure.


2021 ◽  
Author(s):  
Ghazwa BOUDALI ◽  
Tahar Ghnaya ◽  
Saoussen BEN-ABDALLAH ◽  
Abdala CHALAH ◽  
Abdelaziz SEBEI ◽  
...  

Abstract In this study, we investigated the effect of Zincum Metallicum (ZM) on zinc (Zn) toxicity in the plant species Lepidium sativum. We focused on growth, Zn uptake and numerous biochemical parameters. Seedlings were hydroponically subjected during 7 days to 0.05, 500, 1000, 1500 and 2000 µM Zn2+, in the absence or presence of 15ch or 9ch ZM. In the absence of ZM, Zn induced negative effect on growth especially at the dose of 2mM. Zn induced also chlorosis, reduced total chlorophyll and/or carotenoid content and increased the level of malondialdehyde (MDA). Under Zn-toxicity (500, 1000 and 1500 µM), the superoxide dismutase (SOD), catalase (CAT), gaiacol peroxidase (GPX) and glutathione reductase (GR) activities were increased and/or unaltered, while at 2000 µM Zn affected the activity of these enzymes. At the highest Zn level (2 mM), proline and total polyphenols and flavonoids contents were markedly induced in leaves and roots of L. sativum. Additionally, the supply of ZM in the nutrient medium considerably ameliorated the plant growth, photosynthetic pigments and the studied non-enzymatic antioxidant molecules and enzymatic activities against Zn induced-oxidative stress. Our data suggest that the potential homeopathy properties of ZM may be efficiently involved in the restriction of Zn-induced oxidative damages, by lowering Zn accumulation and translocation in the leaves and roots of Lepidium sativum.


Author(s):  
Rainer Dähn ◽  
Bart Baeyens ◽  
Maria Marques Fernandes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document