Phenylalanine induces pulmonary hypertension through calcium-sensing receptor activation

2020 ◽  
Vol 319 (6) ◽  
pp. L1010-L1020
Author(s):  
Rubin Tan ◽  
Jiansha Li ◽  
Fangbo Liu ◽  
Pu Liao ◽  
Matthieu Ruiz ◽  
...  

Phenylalanine levels are associated with pulmonary hypertension in metabolic profiling clinical studies. However, the pathophysiological role of phenylalanine on pulmonary circulation is still unclear. We experimentally addressed the direct impact of phenylalanine on pulmonary circulation in rats and explored the underlying molecular pathway. Phenylalanine was injected intraperitoneally into Sprague-Dawley rats (400 mg/100 g body wt) as a single dose or daily in a chronic manner for 2, 3, and 4 wk. Chronic injection of phenylalanine induced pulmonary hypertension with time-dependent severity, evidenced by elevated pulmonary artery pressure and pulmonary vascular resistance as well as pulmonary artery and right ventricular hypertrophy. Using tandem mass spectrometry analysis, we found a quick twofold increase in blood level of phenylalanine 2 h following injection. This increase led to a significant accumulation of phenylalanine in lung after 4 h, which remained sustained at up to a threefold increase after 4 wk. In addition, a cellular thermal shift assay with lung tissues from phenylalanine-injected rats revealed the binding of phenylalanine to the calcium-sensing receptor (CaSR). In vitro experiments with cultured pulmonary arterial smooth muscle cells showed that phenylalanine activated CaSR, as indicated by an increase in intracellular calcium content, which was attenuated or diminished by the inhibition or knockdown of CaSR. Finally, the global knockout or lung-specific knockdown of CaSR significantly attenuated phenylalanine-induced pulmonary hypertension. Chronic phenylalanine injection induces pulmonary hypertension through binding to CaSR and its subsequent activation. Here, we demonstrate a pathophysiological role of phenylalanine in pulmonary hypertension through the CaSR. This study provides a novel animal model for pulmonary hypertension and reveals a potentially clinically significant role for this metabolite in human pulmonary hypertension as a marker, a mediator of disease, and a possible therapeutic target.

2011 ◽  
Vol 24 (Suppl. 18) ◽  
pp. 38-41 ◽  
Author(s):  
Mario Cozzolino ◽  
Sandro Mazzaferro ◽  
Piergiorgio Messa

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e65147 ◽  
Author(s):  
Hanping Qi ◽  
Yonggang Cao ◽  
Wei Huang ◽  
Yang Liu ◽  
Ye Wang ◽  
...  

2006 ◽  
Vol 282 (8) ◽  
pp. 5310-5317 ◽  
Author(s):  
Kausik Ray ◽  
Kaylin A. Adipietro ◽  
Claudia Chen ◽  
John K. Northup

2009 ◽  
Vol 10 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Guerman Molostvov ◽  
Rosemary Bland ◽  
Daniel Zehnder

2016 ◽  
Vol 49 ◽  
pp. 44-51 ◽  
Author(s):  
Jennifer L. Owen ◽  
Sam X. Cheng ◽  
Yong Ge ◽  
Bikash Sahay ◽  
Mansour Mohamadzadeh

Author(s):  
Rui Xiao ◽  
Shengquan Luo ◽  
Ting Zhang ◽  
Yankai Lv ◽  
Tao Wang ◽  
...  

Activation of the CaSR (extracellular calcium-sensing receptor) has been recognized as a critical mediator of hypoxia-induced pulmonary hypertension. Preventive targeting of the early initiating phase as well as downstream events after CaSR activation remains unexplored. As a representative of the G protein-coupled receptor family, CaSR polymerizes on cell surface upon stimulation. Immunoblotting together with MAL-PEG technique identified a reactive oxygen species-sensitive CaSR polymerization through its extracellular domain in pulmonary artery smooth muscle cells upon exposure to acute hypoxia. Fluorescence resonance energy transfer screening employing blocking peptides determined that cycteine129/131 residues in the extracellular domain of CaSR formed intermolecular disulfide bonds to promote CaSR polymerization. The monitoring of intracellular Ca 2+ signal highlighted the pivotal role of CaSR polymerization in its activation. In contrast, the blockade of disulfide bonds formation using a peptide decreased both CaSR and hypoxia-induced mitogenic factor expression as well as other hypoxic-related genes in vitro and in vivo and attenuated pulmonary hypertension development in rats. The blocking peptide did not affect systemic arterial oxygenation in vivo but inhibited acute hypoxia-induced pulmonary vasoconstriction. Pharmacokinetic analyses revealed a more efficient lung delivery of peptide by inhaled nebulizer compared to intravenous injection. In addition, the blocking peptide did not affect systemic arterial pressure, body weight, left ventricular function, liver, or kidney function or plasma Ca 2+ level. In conclusion, a peptide blocking CaSR polymerization reduces its hypoxia-induced activation and downstream events leading to pulmonary hypertension and represents an attractive inhaled preventive alternative worthy of further development.


Sign in / Sign up

Export Citation Format

Share Document