Essential role of NF-κB and AP-1 transcription factors in TNF-α-induced TSLP expression in human airway smooth muscle cells

2011 ◽  
Vol 300 (3) ◽  
pp. L479-L485 ◽  
Author(s):  
Naresh Singh Redhu ◽  
Ali Saleh ◽  
Andrew J. Halayko ◽  
Aliyah S. Ali ◽  
Abdelilah S. Gounni

Human airway smooth muscle (HASM) cells are a rich source of inflammatory mediators that may propagate the airway inflammatory responses. Recent studies from our laboratory and others demonstrate that HASM cells express the proallergic cytokine thymic stromal lymphopoietin (TSLP) in vitro and in vivo. Compelling evidence from in vitro studies and animal models suggest that the TSLP is a critical factor sufficient and necessary to induce or maintain the allergic airway inflammation. Despite of an immense interest in pathophysiology of TSLP in allergic inflammation, the triggers and mechanisms of TSLP expression remain inadequately understood. In this study, we found that TNF-α upregulates the TSLP mRNA and induces high levels of TSLP protein release in primary human ASM cells. Interestingly, TNF-α induced the TSLP promoter activity ( P < 0.05; n = 4) in HASM that was mediated by upstream NF-κB and activator protein-1 (AP-1) binding sites. Mutation in NF-κB and AP-1 binding sites completely abrogated the effect of TNF-α-mediated TSLP promoter activity and so did the expression of a dominant-negative mutant construct of IκB kinase. Furthermore, the peptide inhibitors of IκB kinase or NF-κB inhibited the TNF-α-induced TSLP protein release ( P < 0.05; n = 3) in HASM. Collectively, our data suggest a novel important biological role for NF-κB pathway in TNF-α-induced TSLP expression in HASM and recommend this as a prime target for anti-inflammatory drugs.

2008 ◽  
Vol 295 (1) ◽  
pp. L186-L193 ◽  
Author(s):  
Bit Na Kang ◽  
Joseph A. Jude ◽  
Reynold A. Panettieri ◽  
Timothy F. Walseth ◽  
Mathur S. Kannan

The enzymatic activity of CD38, ADP-ribosyl cyclase, synthesizes the calcium mobilizing molecule cyclic ADP-ribose from β-NAD. In human airway smooth muscle (HASM) cells, CD38 expression is augmented by the inflammatory cytokine, TNF-α, causing increased intracellular calcium response to agonists. The transcriptional and posttranscriptional regulation of CD38 expression involves signaling through MAPKs and requires activation of NF-κB and activator protein-1 (AP-1). The cytokine-augmented CD38 expression is decreased by anti-inflammatory glucocorticoids due to inhibition of NF-κB activation and other mechanisms. In this study, we investigated glucocorticoid regulation of CD38 expression in HASM cells through the MKP-1. In HASM cells, dexamethasone and TNF-α induced MKP-1 expression (both mRNA and protein) rapidly. Dexamethasone decreased TNF-α-induced phosphorylation of the major MAPKs, i.e., ERK, p38, and JNK, and decreased the activation of NF-κB and AP-1. Dexamethasone also decreased CD38 expression induced by TNF-α, and part of this effect was attributable to decreased transcript stability. In cells transfected with MKP-1-specific small interfering RNAs (siRNAs), there was significant attenuation of MKP-1 expression and partial, but nonsignificant, reversal of dexamethasone inhibition of CD38 expression. These results indicate that regulation of CD38 expression in HASM cells by glucocorticoids involves decreased signaling through MAPKs and activation of transcription factors. The glucocorticoid effects on decreased CD38 expression and function result from regulation through transcription and transcript stability.


2007 ◽  
Vol 292 (6) ◽  
pp. L1414-L1421 ◽  
Author(s):  
Yoko Osawa ◽  
Peter D. Yim ◽  
Dingbang Xu ◽  
Reynold A. Panettieri ◽  
Charles W. Emala

Tumor necrosis factor (TNF)-α is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-α has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-α receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-α in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or Gi proteins. TNF-α caused a significant dose- (1–10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-α also increased phosphorylation of Ser338 on raf-1 kinase, indicative of activation. IL-1β and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-α transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase.


2008 ◽  
Vol 9 (1) ◽  
Author(s):  
Krishnaswamy G Tirumurugaan ◽  
Bit Na Kang ◽  
Reynold A Panettieri ◽  
Douglas N Foster ◽  
Timothy F Walseth ◽  
...  

1999 ◽  
Vol 276 (3) ◽  
pp. L405-L411 ◽  
Author(s):  
Kunihisa Hotta ◽  
Charles W. Emala ◽  
Carol A. Hirshman

Chronic inflammation is a characteristic feature of asthma. Multiple inflammatory mediators are released within the asthmatic lung, some of which may have detrimental effects on signal transduction pathways in airway smooth muscle. The effects of tumor necrosis factor (TNF)-α on the expression and function of muscarinic receptors and guanine nucleotide-binding protein (G protein) α-subunits were examined in human airway smooth muscle cells. Cultured human airway smooth muscle cells were incubated in serum-free culture medium for 72 h in the presence and absence of 10 ng/ml of TNF-α, after which the cells were lysed and subjected to electrophoresis and Gαi-2, Gqα, and Gsα protein subunits were detected by immunoblot analysis with specific antisera. TNF-α treatment for 72 h significantly increased the expression of Gαi-2 and Gqα proteins and enhanced carbachol (10−7 M)-mediated inhibition of adenylyl cyclase activity and inositol phosphate synthesis. These data provide new evidence demonstrating that TNF-α not only increases expression of Gαi-2 and Gqα proteins but also augments the associated signal transduction pathways that would facilitate increased tone of airway smooth muscle.


2002 ◽  
Vol 282 (4) ◽  
pp. L847-L853 ◽  
Author(s):  
Paul E. Moore ◽  
Trudi L. Church ◽  
David D. Chism ◽  
Reynold A. Panettieri ◽  
Stephanie A. Shore

Human airway smooth muscle (HASM) cells express interleukin (IL)-13 and IL-4 receptors and respond to these cytokines with signal transducer and activator of transcription-6 and extracellular signal-regulated kinase (ERK) activation. The purpose of this study was to determine whether IL-13 and/or IL-4 influence eotaxin release in HASM cells and whether the ERK mitogen-activated protein (MAP) kinase pathway is involved in these events. Eotaxin release into HASM cell supernatants was assayed by ELISA, and eotaxin mRNA expression was determined by Northern blot analysis. Pretreatment with either IL-13 or IL-4 resulted in a concentration- and time-dependent release of eotaxin, although IL-4 was more effective. Eotaxin release was approximately twice baseline after treatment with 50 ng/ml IL-13 or IL-4 ( P < 0.001). IL-13 and IL-4 also acted synergistically with tumor necrosis factor (TNF)-α to induce eotaxin release: TNF-α alone (10 ng/ml for 24 h) resulted in an approximately fourfold increase in eotaxin release, whereas TNF-α in combination with IL-13 or IL-4 resulted in 10- or 20-fold increases ( P < 0.05). Similar results were obtained for eotaxin mRNA expression. Pretreatment with either U-0126 (10 μM) or PD-98059 (30 μM), both inhibitors of MAP/ERK kinase, the enzyme upstream of ERK, inhibited IL-13- or IL-4-induced eotaxin release ( P < 0.05). U-0126 also inhibited IL-13, and TNF-α induced mRNA expression. Our results indicate that IL-13 and IL-4 cause eotaxin release in HASM cells through a mechanism that, in part, involves ERK activation and suggest that the smooth muscle may be an important source of chemokines leading to eosinophil recruitment in asthma.


2003 ◽  
Vol 285 (4) ◽  
pp. L907-L914 ◽  
Author(s):  
Débora S. Faffe ◽  
Timothy Whitehead ◽  
Paul E. Moore ◽  
Simonetta Baraldo ◽  
Lesley Flynt ◽  
...  

The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1β, IFN-γ, nor TNF-α alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-α but not IL-1β or IFN-γ. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-α + IL-13 or TNF-α + IL-4 was inhibited by the β-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Rα have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Rα. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Rα genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Rα genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways.


Sign in / Sign up

Export Citation Format

Share Document