cd38 expression
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 78)

H-INDEX

43
(FIVE YEARS 6)

Author(s):  
Weijun Wei ◽  
Di Zhang ◽  
Cheng Wang ◽  
You Zhang ◽  
Shuxian An ◽  
...  

Leukemia ◽  
2021 ◽  
Author(s):  
Estefanía García-Guerrero ◽  
Ralph Götz ◽  
Sören Doose ◽  
Markus Sauer ◽  
Alfonso Rodríguez-Gil ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meike Farber ◽  
Yiyang Chen ◽  
Lucas Arnold ◽  
Michael Möllmann ◽  
Eva Boog-Whiteside ◽  
...  

AbstractTargeting the interaction between leukemic cells and the microenvironment is an appealing approach to enhance the therapeutic efficacy in acute myeloid leukemia (AML). AML infiltration induces a significant release of inflammatory cytokines in the human bone marrow niche which accelerates leukemogenesis. As the transmembrane glycoprotein CD38 has been shown to regulate cytokine release, we assessed the anti-leukemic potential of CD38 inhibition in AML. CD38 expression in AML cells proved to depend on microenvironmental cues and could be significantly enforced through addition of tretinoin. In fact, the anti-CD38 antibody daratumumab showed significant cytostatic efficacy in a 3D in vitro triple-culture model of AML, but with modest cell-autonomous cytotoxic activity and independent of CD38 expression level. In line with a predominantly microenvironment-mediated activity of daratumumab in AML, CD38 inhibition significantly induced antibody-dependent phagocytosis and showed interference with AML cell trafficking in vivo in a xenograft transplantation model, but overall lacked robust anti-leukemic effects.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2652-2652
Author(s):  
Ruxandra Maria Irimia ◽  
Margo Brooke Gerke ◽  
Maya Thakar ◽  
Zhihong Ren ◽  
Eric Helmenstine ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a disease of malignant plasma cells, characterized by high CD38 expression. Although the CD38-targeting monoclonal antibodies are highly effective, resistance invariably arises. Tumor CD38 levels decrease after anti-CD38 therapy, but the expression is rarely permanently silenced. This suggests that CD38 expression may offer a tumor cell survival advantage, but the direct impact of CD38 loss on tumor dynamics has not been extensively characterized. Methods: CD38 knockout (KO) cell lines were generated by CRISPR-Cas9. Immunocompetent Balb/c and immunodeficient NSG mice were injected subcutaneously with either non-targeting (NT) or CD38 KO J558 cells. Stromal adhesion was compared using labeled NT and KO cells, with OP-9 murine stroma cells. Cellular NAD content was quantified using the Promega Glo Assay. Mitochondria were isolated with the Mitochondria Isolation Kit (Thermo Scientific). Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were quantified using the Seahorse Assay. Response to hypoxia was evaluated using a modular hypoxic chamber. Cell cycle was quantified using propidium iodine staining. Results: To examine the role of CD38 in murine models, we utilized the CD38-expressing, murine plasmacytoma cell line J558. Strikingly, CD38 KO cells injected into Balb/c mice demonstrated significantly decreased tumor volume compared to NT (113 mm 3 (KO) vs. 1293 mm 3 (NT) at day 25, p <0.001). In contrast, in vitro cell proliferation and colony formation between KO and NT J558 cells were nearly identical, suggesting that the effects of CD38-loss were highly context dependent. Since tumoral CD38 expression may negatively modulate the immune response, we next compared CD38 KO and NT cells injected into immunodeficient NSG mice. CD38 KOs demonstrated an approximately 2.2-fold decreased tumor volume compared to the NT (708 mm 3 (KO) vs. 1592 mm 3 (NT), p=0.07). Further examination of the role of CD38 on the immune microenvironment are ongoing. Considering that some tumor growth impairment was maintained in immunodeficient mice, we next interrogated the effect of CD38 loss on other aspects of cell proliferation using J558 as well as human MM cell lines RPMI-8226 and NCI-H929. Daratumumab induced CD38 internalization has been shown to reduce stromal adhesion of MM cells. Similarly, CD38 KO cells demonstrated reduced stromal adhesion (2.5-fold decrease for J558, p<0.005 and 2-fold decrease for H929, p<0.005). Although stroma is a known promoter of cell survival and proliferation, we further questioned whether the NAD-metabolizing activity of CD38 modulates tumor growth. CD38 overexpression can drive down intracellular NAD and impair mitochondrial biogenesis. Accordingly, we found significantly higher NAD levels in the KO J558 tumor cells compared to NT (2-fold change, p <0.05). Additionally, CD38 KO cells demonstrated significantly higher levels of mitochondrial protein compared with the NTs (5-fold in J558 and 2-fold in H929). CD38 KO cell lines also showed markedly increased metabolic activity, with nearly 2-fold increase in basal OCR and ECAR, as well as in spare respiratory and glycolytic capacity. Given the contrast between in vivo and in vitro growth capacity, we questioned whether changes in mitochondrial content and metabolic function could confer an advantage for CD38-expressing cells under conditions of hypoxia, which is an important characteristic of the tumor microenvironment. Strikingly, under hypoxia, but not normoxia, CD38 KO MM cells demonstrated significantly more cell cycle arrest, defined by G0/G1 blockage (p=0.003 for H929 and p=0.004 for RPMI). Conclusion: We have shown that CD38 KO cells demonstrate decreased tumor growth in vivo but not in vitro. While the immune modulatory potential of CD38 is recognized, some of the growth impairment we observed may be explained by non-immune mediated mechanisms such as reduced stroma adherence as well as changes in cell metabolism. Loss of CD38 was associated with increased mitochondrial respiration, but also elevated ECAR and glycolytic rate. Higher reliance on mitochondrial respiration could explain impaired CD38 KO proliferation rates under hypoxia, possibly as a result of increased generation of reactive oxygen species. Disclosures Ghiaur: Menarini Richerche: Research Funding; Syros Pharmaceuticals: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1580-1580
Author(s):  
Yawara Kawano ◽  
Saki Kushima ◽  
Hiroyuki Hata ◽  
Masao Matsuoka

Abstract Introduction. Anti-CD38 monoclonal antibodies, such as daratumumab and isatuximab, which exerts therapeutic effect against multiple myeloma (MM) cells through direct cell damage, antibody dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), has shown its high efficacy in clinical practice. However, the role of CD38 in MM cell biology is still unclear. CD38 is known as a major nicotinamide adenine dinucleotide (NAD +) glycohydrase (NADase) in mammalian tissues, which regulate cellular levels of NAD +. In the present study, we compared metabolic and proteomic profile between CD38 positive and negative MM cell lines to analyze the biological significance of CD38 in MM cells. Additionally, we performed CD38 enzyme activity inhibition on MM cells using 78c, a NADase enzyme inhibitor of CD38, in order to study the role of CD38 NADase activity in MM cell survival. Materials and methods. MM cell lines harboring CD38 positive and negative fractions (KMS-12BM, KMS-11) were sorted according to CD38 expression. Intracellular NAD+ and NADH concentrations between CD38 positive and negative cells were analyzed using NAD/NADH Assay kit. CD38 positive and negative MM cells were subjected to metabolome and proteome analysis using Shimadzu TQ8050 GC-MS/MS and TripleTOF 5600 respectively. Metabolites and proteins significantly enriched in CD38 negative MM cells were analyzed using MetaboAnalyst and Metascape. Cell cycle status between CD38 positive and negative cells were determined by flow cytometry after staining by BRDU and 7AAD. CD38 positive MM cell lines (NCI-H929 and KMS-12PE) and patient derived bone marrow cells were treated with 78c, a CD38 NADase inhibitor, in vitro. MM cell viability were determined by flow cytometry post Annexin V and PI staining. Differences in metabolites between 78c treated and control MM cell lines were also analyzed using Shimadzu TQ8050 GC-MS/MS. Results. Higher NAD+ and NAD+/NADH ratio was observed in CD38 negative fraction of MM cell lines compared to their CD38 positive counterparts, demonstrating that cell surface CD38 expression influences intracellular NAD+ concentration. Both metabolome and proteome analysis revealed that CD38 negative cells tend to have higher glycolytic activity compared to CD38 positive cells. Significant suppression of cell cycle, accompanying G0/G1 phase arrest, was observed in CD38 negative MM cells, indicating that metabolic shift in CD38 negative MM cells may lead to change in cell proliferation. Marked increase of NAD+/NADH ratio was observed in 78c treated MM cell lines compared to control, proving that CD38 NADase inhibiton indeed affects intracellular NAD+ concentration in MM cells. 78c was capable of inducing cell death in MM cell lines and patient derived MM cells, accompanying cell cycle arrest. Metabolites significantly upregulated in 78c treated MM cells compared to control were associated with glycolysis, demonstrating that CD38 NADase activity has a significant effect on MM cell metabolism. Conclusions. CD38 is the major NADase in mammalian tissues, involved in catabolism of NAD +. Although CD38 is highly expressed in normal plasma cells and MM cells, its role in MM cell biology has not been studied in detail. By comparing CD38 positive and negative cells and using CD38 NADase inhibitor, we showed for the first time that CD38 on MM cells decrease intracellular NAD+, reduces intracellular glycolysis and as a result, has an influence on cell cycle. The present study sheds light on the significance of CD38 enzyme activity in MM cell biology and may also contribute to understanding the mechanism of resistance to CD38 targeted therapy. Disclosures Kawano: Janssen Pharmaceuticals: Honoraria; Ono pharmaceutical: Honoraria; Sanofi: Honoraria; Bristol Myers Squibb: Honoraria; Takeda Pharmaceuticals: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2413-2413
Author(s):  
Xiaocheng Chen ◽  
Oi Kwan Wong ◽  
Leonard Post

Abstract Targeting cluster of differentiation 38 (CD38) with monoclonal antibodies has resulted in outstanding responses in patients with multiple myeloma (MM). However, a significant portion of patients failed to respond and nearly all patients eventually relapsed. Furthermore, daratumumab, an anti-CD38 antibody, only showed limited monotherapy activity in relapsed/refractory Non-Hodgkin lymphoma (NHL) patients in a phase 2 study. One of the mechanisms of resistance has been partially attributed to lower CD38 expression. Intercellular adhesion molecule 1 (ICAM1), an immunoglobulin (Ig)-like cell adhesion molecule, is highly expressed in multiple myeloma and lymphoma. Antibody against ICAM1, bersanlimab (BI505, BioInvent), was well-tolerated, but only showed limited clinical efficacy in MM patients. Here, we generated bispecific CD38 x ICAM1 antibody to target ICAM1 + tumor types with low to medium CD38 expression. RNA sequencing (RNAseq) results from the Cancer Cell Line Encyclopedia (CCLE) database showed that ICAM1 is highly expressed on myeloma and lymphoma cell lines. ICAM1 expression levels for selected myeloma and lymphoma cell lines were then validated using flow cytometry. The CD38 x ICAM1 bispecific antibody was constructed by paring a novel CD38 antibody and a novel ICAM1 antibody through an asymmetric three chain knob-into-hole format. The bispecific antibody showed potent in vitro antibody-dependent cellular cytotoxicity (ADCC) activities on ICAM1 + tumor cells with medium to low CD38 levels, where daratumumab has low or minimal effect. The bispecific antibody also showed potent in vitro antibody-dependent cellular phagocytosis (ADCP) activities on cell lines with a range of CD38 expression. The CD38 x ICAM1 bispecific antibody further demonstrated potent tumor inhibition activities in in vivo myeloma and lymphoma cell line-derived xenograft (CDX) models, including cell lines with low to medium CD38 expression. We then evaluated CD38 and ICAM1 expressions in lymphoma patient-derived xenograft (PDX) samples by RNAseq. Among the 37 PDX samples, 27 of them showed ICAM1 expression above 2 5 fragments per kilobase of transcript per million map reads (FPKM). On the contrary, there is a wide range of CD38 expression levels with only 6 samples having CD38 expression above 2 5 FPKM. The ICAM1 and CD38 expressions in the selected PDX samples were further validated with IHC staining. Most importantly, the CD38 x ICAM1 bispecific antibody showed complete tumor inhibition in a rituximab-resistant lymphoma PDX model, whereas daratumumab only showed minimal efficacy. In conclusion, the CD38 x ICAM1 bispecific antibody demonstrated improved efficacy and specificity toward CD38 + and ICAM1 + tumor cells and represents a novel approach for treating multiple myeloma and lymphoma. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2648-2648
Author(s):  
Priya Choudhry ◽  
Olivia Gugliemini ◽  
Huimin Geng ◽  
Vishesh Sarin ◽  
Letitia Sarah ◽  
...  

Abstract Background: CD38 is a surface ectoenzyme expressed at high levels on myeloma plasma cells and is the target for the monoclonal antibodies (mAbs) daratumumab and isatuximab. These antibodies have multiple mechanisms of action, primarily involving recruiting and modulating components of the immune system, but they may also carry direct anti-tumor effects. CD38 density on tumor cells is an important determinant of mAb efficacy while CD38 is lost after mAb treatment. Several small molecules have been found to increase tumor surface CD38, with the goal of boosting mAb efficacy in a co-treatment strategy. However, we do not yet have a broad global sense of the transcriptional or post-transcriptional networks that most strongly impact CD38 expression. There may be alternate strategies to even more potently increase CD38 expression that have not yet been identified. Furthermore, prior clinical studies showed that CD38 downregulation after daratumumab treatment was accompanied by increases in the complement inhibitors CD55 and CD59. Are there other features of myeloma surface remodeling driven by CD38 downregulation? Here we sought to extend our currently limited insight into CD38 surface expression by using a multi-omics approach. Methods: Genome-wide CRISPR interference screening was performed in RPMI-8226 cells stably expressing the dCas9-KRAB fusion protein. Cells were grown for 14 days after library transduction, flow-sorted on the top and bottom 25% of CD38 surface expression, and sgRNA's deep sequenced. Antibody-dependent cellular cytoxicity assays were performed with NK92-CD16 cells. Cell surface proteomics was performed using N-glycoprotein cell surface capture in triplicate. Phosphoproteomics was performed used immobilized metal affinity chromatography in triplicate. Murine studies were performed in NSG mice under approved IACUC-approved institutional protocols. Results: A genome-wide CRISPR-interference screen in RPMI-8226 cells demonstrated that transcriptional and epigenetic factors played the most prominent role in surface CD38 regulation (Fig. 1A). One of the genes that when knocked down led to greatest surface CD38 increase was RARA. This finding supports the promise of all-trans retinoic acid (ATRA), which leads to RARA degradation, as a potent agent to induce CD38 upregulation. Validation of additional screen hits TLE3 and HEXIM1 also illustrated that these negative regulatory transcription factors suppress CD38 expression at baseline (not shown). We found the transcription factor SPI1 to be a prominent positive regulator of CD38. SPI1 knockdown led to daratumumab resistance both in vitro and in vivo, similar to the resistance observed after CD38 knockdown (not shown). Analysis of myeloma patient ATAC-seq data, assessing transcription factor motifs present at the CD38 locus, combined with a predictive machine learning model, further identified XBP1 as one of the most potent transcriptional regulators of CD38 (Fig. 1B). We next used "antigen escape profiling" - knockdown of CD38 followed by unbiased cell surface proteomics - to mimic surface alterations in the context of CD38 loss. We found minimal changes in other cell surface proteins beyond CD38 (Fig. 1C), indicating the CD38 loss alone is not sufficient to remodel the myeloma surfaceome. This finding also supports the hypothesis that complement or other immune system interactions are necessary to lead to other myeloma surface protein alterations. In a parallel analysis of pharmacologic regulation, we also used cell surface proteomics integrated with RNA-seq to demonstrate that ATRA leads to few other surface protein changes beyond CD38 (not shown). In contrast, other molecules, such as azacytidine and panobinostat, led to broader changes across many more surface proteins, showing a lack of specificity when driving CD38 upregulation. Finally, unbiased phosphoproteomics revealed partial inhibition of the MAP kinase pathway after daratumumab binding (Fig. 1D). This result may comprise a direct anti-proliferative effect of anti-CD38 therapeutic antibody engagement in myeloma. Conclusions: Our work provides a resource to design strategies to enhance efficacy of CD38-targeting immunotherapies in myeloma. Our approach also outlines a broad multi-omic strategy to evaluate surface and transcriptional regulation of other key immunotherapeutic targets in hematologic malignancies. Figure 1 Figure 1. Disclosures Choudhry: Genentech: Current Employment, Current equity holder in publicly-traded company. Ramkumar: Senti Biosciences: Current Employment, Current holder of individual stocks in a privately-held company.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1568-1568
Author(s):  
Niels Van Nieuwenhuijzen ◽  
Marta Cuenca ◽  
Leonie Abbink ◽  
Eline Lammers ◽  
Margot Jak ◽  
...  

Abstract Background Since its approval in 2015, daratumumab has become incorporated in standard-of-care regimens of antimyeloma therapy. However, response to daratumumab in patients with relapsed/refractory multiple myeloma (RRMM) is heterogeneous, and a reliable biomarker of response is lacking. Expression of CD38 was shown to be associated with response to daratumumab, but failed to predict responses consistently and is therefore not used in clinical practice. Aim of our study was to develop an in vitro method that accurately identifies patients with RRMM that will respond to daratumumab treatment. Methods We obtained CD38 mean fluorescent intensity (MFI) of plasma cells from patients with RRMM just before starting daratumumab therapy, as well as best clinical response to treatment and duration of response to daratumumab in weeks. When possible, extra material was obtained at the bone marrow biopsy performed before the start of daratumumab treatment and frozen in liquid nitrogen in our local biobank facility. All included patients provided written informed consent. Bone marrow mononuclear cells from patients with RRMM were thawed and cultured for a week in a hydrogel-based culture system, supplemented with pro-survival cytokines IL-6 and APRIL. To examine the in vitro response to daratumumab, we added 0.1 μg/ml daratumumab or 0.1 μg/ml IgG1κ isotype to the culture wells. We measured complement-dependent cytotoxicity (CDC) by adding 10% pooled human serum and antibody-dependent cellular cytotoxicity (ADCC) by adding healthy-donor peripheral blood mononuclear cells (PBMC) in a 10:1 effector-to-target ratio. After overnight incubation, hydrogel cultures were broken down mechanically and specific lysis was determined with flow cytometry, using CD138 and CD38 multi-epitope antibodies to select plasma cells, and using ToPro3 live/dead stain and Flow-Count Fluorospheres to obtain absolute numbers of surviving plasma cells. Results First, we analyzed CD38 MFI of plasma cells from 35 patients with RRMM just before starting daratumumab treatment, both as monotherapy or as part of a regimen. As was previously reported by others 1,2, we found a significant association between expression of CD38 and response (p = 0.01) (Figure 1A). However, we also observed considerable overlap between CD38 MFI values of responders and non-responders, with AUC ROC = 0.75. Therefore the discriminatory value of CD38 expression to predict response is weak. Next, we tested daratumumab in vitro on plasma cells obtained from 10 patients with RRMM. Daratumumab ADCC was associated with clinical response by the corresponding patients (p = 0.008), with a median specific lysis of 54.3% for patients who obtained a PR and 26.0% for patients who did not obtain a PR (Figure 1B). Median CDC for patients who did not obtain a PR was 3.16% versus 45.3% for patients who did obtain a PR, without a significant difference between the two groups (p = 0.18). Further evaluation of these results revealed AUC ROC of 1.00 and 0.81 for ADCC and CDC, respectively, outperforming CD38 expression. For ADCC, a threshold value of 39.6% lysis translated to a diagnostic accuracy of 100%, while for CDC a threshold value of 29.4% resulted in a diagnostic accuracy of 87.5%. Ultimately, we compared these results to CD38 expression. With an optimal CD38 MFI threshold value of 10989, diagnostic accuracy of CD38 expression was 71.4%. In addition, we examined ability of the test methods to predict the clinically experienced duration of response to daratumumab treatment. We observed no difference in duration of response when using the optimal threshold values of CD38 MFI (p = 0.13) and CDC lysis (p = 0.12), but duration of response was significantly different for patients with an ADCC lysis above and below the threshold value of 39.6% (p = 0.002) (Figure 1C). Conclusion In summary, we developed an straightforward and consistent in vitro method to predict response to daratumumab treatment in vivo. Measuring ADCC in patient-derived plasma cells using healthy-donor PBMC within our hydrogel-based culture system corresponds with the overall clinical response and duration of response to daratumumab. Our results support further clinical validation of the in vitro use of primary plasma cells to identify patients most likely to benefit from treatment. References 1. Nijhof IS, et al. Blood. 2016;128(7):959-970. 2. Kitadate A, et al. Haematologica. 2019;105(1):e37-e40. Figure 1 Figure 1. Disclosures Peperzak: Philips Healthcare: Research Funding. Minnema: Celgene: Other: Travel expenses; Alnylam: Consultancy; Janssen: Consultancy; Cilag: Consultancy; Kite/Gilead: Consultancy; BMS: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2408-2408
Author(s):  
William T. Johnson ◽  
Colleen Isabelle ◽  
Ashley N Vogel ◽  
Jonathan E Brammer ◽  
Amy E Boles ◽  
...  

Abstract Introduction: Mature T-cell neoplasms (MTCN) are a heterogeneous and aggressive group of lymphoid neoplasms with very limited options for precision immunotherapy. Targeted immunotherapy with antibodies directed against surface markers on tumor cells has emerged as an effective treatment for B-cell neoplasms, but the development of immunotherapy strategies for MTCN has been much slower. CD38 is expressed at low levels in a subset of normal resting T-cells. Data on the frequency and level of CD38 expression is MTCN are lacking. Our goal was to study the expression and stability of CD38 on a spectrum of neoplastic T-cell populations and assess the potential anti-tumor effect of anti-CD38 monoclonal antibodies in combination with allogeneic natural killer (NK) cells in MTCN. Methods and results: We searched the Thomas Jefferson University Hospital (TJUH) pathology records for all cases of MTCN for which immune-phenotypical characterization of the neoplastic T-cell population by multi-color flow cytometry (FC) was available. CD38 expression was evaluated in cases where an abnormal T-cell population (defined as loss of one on more pan T-cell markers and/or a skewed CD4 to CD8 ratio). A total of 103 unique patients with MTCN were identified. Of these, 51 had at least one biopsy whereby tumor cells had an abnormal immunophenotype which could then be assessed for CD38 expression. CD38 was expressed to some extent in all but 2 cases with expression levels on peripheral T-cell lymphoma-not other specified (PTCL-NOS)(% Mean±SEM = 80.84±10.26, N=11), angioimmunoblastic T-cell lymphoma (AITL) (% Mean±SEM = 80.56±7.34, N=6), nodal PTCL with T follicular-helper (T FH) phenotype (% Mean±SEM = 55.00±12.72, N=7), anaplastic large cell lymphoma (ALCL) (% Mean±SEM = 77.38±10.75, N=3), large granular lymphocytic leukemia (LGLL) (% Mean±SEM = 80.27±7.49, N=4), T-cell prolymphocytic leukemia (T-PLL) (% Mean±SEM = 88.26±4.20, N=7), cutaneous T-cell lymphoma (CTCL) (% Mean±SEM = 49.52±14.77, N=7), adult T-cell leukemia/lymphoma (ATLL) (% Mean±SEM = 76.68±10.45, N=3), hepatosplenic T-cell lymphoma/monomorphic epitheliotropic intestinal T-cell lymphoma (HSTCL/MEITL) (% Mean±SEM = 75.00±11.37, N=3). The medians and ranges of the MFI of CD38 on CD38+ tumor cells were the following: PTCL-NOS 29.46 (3.1-115.62), AITL 13.64 (2.67-29.41), other PTCL-T FH 5.87 (0-48.67), ALCL 11.13 (3.6-11.28), LGL (13.52 (9.72-18.25), T-PLL 6.49 (3.09-18), CTCL 8.36 (0-116.75), ATLL 27.17 (3.54-60.5), HSTCL/MEITL 15.96 (6.96-167.85). We also measured surface expression of CD38 on the patient-derived MTCN cell lines HuT-78, HuT-102, Jurkat, H9, HH, and MOTN1, all of which expressed CD38, to determine which of these cell lines could be used for in vitro experiments. We next evaluated if the CD38 molecule is an effective target for antibody-mediated therapy in MTCN, by testing the ability of daratumumab (dara) to enhance antibody-dependent cellular cytotoxicity (ADCC) elicited by NK cells. For this, we purified normal NK-cells from TJUH Blood Bank leukoreduction filters and cultured with recombinant IL-15 for 48 hours prior to all experiment. T-cell lines and primary MTCN cells were treated with increasing concentrations (0.1 µg/mL - 2 µg/mL) of dara or isotype control. NK-cells were added at Effector:Target ratio of 5:1 and incubated for 4 hours at 37⁰ Celsius. Cytotoxicity was measured by LDH release assay. Dara induced significant cell lysis starting at doses as low as 0.1μg/mL in both T-cell lines and primary MTCN cells, reaching maximum cytotoxicity at 0.5-2μg/mL (mean±SEM cytotoxicity in isotype vs dara treated cells= 50.0±5.05% vs 97.5±2.5%, N=4, p-value=0.0002). The degree of ADCC induction also correlated with interferon-gamma (IFN-g) release by NK cells in vitro for both T-cell lines and primary MTCN cells. Conclusions: The majority of MTCN analyzed (N=49, 96%) showed any degree of CD38 expression by FC with a wide variation of intensity, including within the same subtype. Allogeneic NK cells efficiently elicited dara-mediated ADCC of tumor cells from all MTCN subtypes and produced abundant IFN-g. These data highlight the potential of targeting CD38 in MTCN with anti-CD38 antibodies and allogeneic NK cells. The strong CD38 expression observed in most tumor cells from ultra-rare and very aggressive subtypes of MTCL opens the door to much needed new treatment strategies. Disclosures Brammer: Celgene: Research Funding; Kymera Therapeutics: Consultancy; Seattle Genetics: Speakers Bureau. Chakravarti: Kiadis Pharma: Patents & Royalties. Porcu: Viracta: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Innate Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Daiichi: Honoraria, Research Funding; Kiowa: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Spectrum: Consultancy; DrenBio: Consultancy.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3734
Author(s):  
Andrea Benzi ◽  
Alessia Grozio ◽  
Sonia Spinelli ◽  
Laura Sturla ◽  
Andreas H. Guse ◽  
...  

Nicotinamide adenine dinucleotide (NAD+) is a fundamental molecule in the regulation of energy metabolism, representing both a coenzyme and a substrate for different NAD+ degrading enzymes. Among these enzymes, CD38 can be seen under two perspectives: as the enzyme synthesizing Ca2+-mobilizing second messenger, starting from NAD+, and as the major NAD+-consumer, to be inhibited to increase NAD+ levels. Indeed, the regulation of NAD+ availability is a key event during different processes. In this review, we examine the recent studies related to the modulation of CD38 expression and activity, and the consequent changes in NAD(P)(H), in adipose tissue, during inflammation and cold-induced thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document