Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia

2007 ◽  
Vol 292 (5) ◽  
pp. L1073-L1084 ◽  
Author(s):  
Vivek Balasubramaniam ◽  
Cela F. Mervis ◽  
Anne M. Maxey ◽  
Neil E. Markham ◽  
Steven H. Abman

Hyperoxia disrupts vascular and alveolar growth of the developing lung and contributes to the development of bronchopulmonary dysplasia (BPD). Endothelial progenitor cells (EPC) have been implicated in repair of the vasculature, but their role in lung vascular development is unknown. Since disruption of vascular growth impairs lung structure, we hypothesized that neonatal hyperoxia impairs EPC mobilization and homing to the lung, contributing to abnormalities in lung structure. Neonatal mice (1-day-old) were exposed to 80% O2at Denver's altitude (= 65% at sea level) or room air for 10 days. Adult mice were also exposed for comparison. Blood, lung, and bone marrow were harvested after hyperoxia. Hyperoxia decreased pulmonary vascular density by 72% in neonatal but not adult mice. In contrast to the adult, hyperoxia simplified distal lung structure neonatal mice. Moderate hyperoxia reduced EPCs (CD45−/Sca-1+/CD133+/VEGFR-2+) in the blood (55%; P < 0.03), bone marrow (48%; P < 0.01), and lungs (66%; P < 0.01) of neonatal mice. EPCs increased in bone marrow (2.5-fold; P < 0.01) and lungs (2-fold; P < 0.03) of hyperoxia-exposed adult mice. VEGF, nitric oxide (NO), and erythropoietin (Epo) contribute to mobilization and homing of EPCs. Lung VEGF, VEGF receptor-2, endothelial NO synthase, and Epo receptor expression were reduced by hyperoxia in neonatal but not adult mice. We conclude that moderate hyperoxia decreases vessel density, impairs lung structure, and reduces EPCs in the circulation, bone marrow, and lung of neonatal mice but increases EPCs in adults. This developmental difference may contribute to the increased susceptibility of the developing lung to hyperoxia and may contribute to impaired lung vascular and alveolar growth in BPD.

2010 ◽  
Vol 298 (3) ◽  
pp. L315-L323 ◽  
Author(s):  
Vivek Balasubramaniam ◽  
Sharon L. Ryan ◽  
Gregory J. Seedorf ◽  
Emily V. Roth ◽  
Thatcher R. Heumann ◽  
...  

Neonatal hyperoxia impairs vascular and alveolar growth in mice and decreases endothelial progenitor cells. To determine the role of bone marrow-derived cells in restoration of neonatal lung structure after injury, we studied a novel bone marrow myeloid progenitor cell population from Tie2-green fluorescent protein (GFP) transgenic mice (bone marrow-derived angiogenic cells; BMDAC). We hypothesized that treatment with BMDAC would restore normal lung structure in infant mice during recovery from neonatal hyperoxia. Neonatal mice (1-day-old) were exposed to 80% oxygen for 10 days. BMDACs (1 × 105), embryonic endothelial progenitor cells, mouse embryonic fibroblasts (control), or saline were then injected into the pulmonary circulation. At 21 days of age, saline-treated mice had enlarged alveoli, reduced septation, and a reduction in vascular density. In contrast, mice treated with BMDAC had complete restoration of lung structure that was indistinguishable from room air controls. BMDAC comprised 12% of distal lung cells localized to pulmonary vessels or alveolar type II (AT2) cells and persist (8.8%) for 8 wk postinjection. Coculture of AT2 cells or lung endothelial cells (luEC) with BMDAC augmented AT2 and luEC cell growth in vitro. We conclude that treatment with BMDAC after neonatal hyperoxia restores lung structure in this model of bronchopulmonary dysplasia.


2009 ◽  
Vol 182 (4S) ◽  
pp. 1898-1905 ◽  
Author(s):  
Arun K. Sharma ◽  
Natalie J. Fuller ◽  
Ryan R. Sullivan ◽  
Noreen Fulton ◽  
Partha V. Hota ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Richard Longeras ◽  
Krysten Farjo ◽  
Michael Ihnat ◽  
Jian-Xing Ma

Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells) and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs)). Pigment epithelium-derived factor (PEDF) contains an N-terminal 34-amino acid peptide (PEDF-34) that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR) model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS). OIR significantly increased the number of circulating Tie2-GFP+at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.


2008 ◽  
Vol 215 (1) ◽  
pp. 234-242 ◽  
Author(s):  
Tomoyuki Matsumoto ◽  
Yutaka Mifune ◽  
Atsuhiko Kawamoto ◽  
Ryosuke Kuroda ◽  
Taro Shoji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document