Nerve growth factor and nerve growth factor receptors in respiratory syncytial virus-infected lungs

2002 ◽  
Vol 283 (2) ◽  
pp. L494-L502 ◽  
Author(s):  
Chengping Hu ◽  
Katrin Wedde-Beer ◽  
Alexander Auais ◽  
Maria M. Rodriguez ◽  
Giovanni Piedimonte

Nerve growth factor (NGF) controls sensorineural development and responsiveness and modulates immunoinflammatory reactions. Respiratory syncytial virus (RSV) potentiates the proinflammatory effects of sensory nerves in rat airways by upregulating the substance P receptor, neurokinin 1 (NK1). We investigated whether the expression of NGF and its trkA and p75 receptors in the lungs is age dependent, whether it is upregulated during RSV infection, and whether it affects neurogenic inflammation. Pathogen-free rats were killed at 2 (weanling) to 12 (adult) wk of age; in addition, subgroups of rats were inoculated with RSV or virus-free medium. In pathogen-free rats, expression of NGF and its receptors in the lungs declined with age, but RSV doubled expression of NGF, trkA, and p75 in weanling and adult rats. Exogenous NGF upregulated NK1 receptor expression in the lungs. Anti-NGF antibody inhibited NK1 receptor upregulation and neurogenic inflammation in RSV-infected lungs. These data indicate that expression of NGF and its receptors in the lungs declines physiologically with age but is upregulated by RSV and is a major determinant of neurogenic inflammation.

1988 ◽  
Vol 36 (4) ◽  
pp. 383-389 ◽  
Author(s):  
P G Chesa ◽  
W J Rettig ◽  
T M Thomson ◽  
L J Old ◽  
M R Melamed

Nerve growth factor (NGF) is a polypeptide important for normal development of the nervous system and promotion of survival and differentiation of sensory and sympathetic neurons in culture. The cellular effects of NGF are mediated by a specific cell surface molecule, nerve growth factor receptor (NGF-R). In the present study we have used a monoclonal antibody against human NGF-R to examine, by the avidin-biotin-immunoperoxidase method, the receptor distribution in a wide range of normal tissues and in more than 200 malignant tumors. Our results show that (a) human NGF-R is expressed in the peripheral nervous system but not in any of the central nervous system areas tested; (b) NGF-R expression is not restricted to neural tissues but is also found in a number of normal epithelial, mesenchymal, and lymphoid tissues; (c) NGF-R expression changes during normal development; and (d) NGF-R expression in malignant tumors generally parallels its normal tissue distribution. Thus, NGF-R is detected in a proportion of neuroectoderm-derived tumors, carcinomas, and lymphomas, and also in a characteristic group of small round-cell tumors (Ewing's sarcomas and embryonal rhabdomyosarcomas). These findings suggest a normal regulatory role for NGF in both neuronal and non-neuronal cells and identify a range of human tumors in which the NGF/NGF-R system may contribute to the malignant phenotype.


1999 ◽  
Vol 159 (5) ◽  
pp. 1541-1544 ◽  
Author(s):  
ANNICK de VRIES ◽  
MARK C. DESSING ◽  
FERDI ENGELS ◽  
PAUL A. J. HENRICKS ◽  
FRANS P. NIJKAMP

Sign in / Sign up

Export Citation Format

Share Document