Effect of hyperoxia on substance P expression and airway reactivity in the developing lung

1997 ◽  
Vol 273 (1) ◽  
pp. L40-L45 ◽  
Author(s):  
F. H. Agani ◽  
N. T. Kuo ◽  
C. H. Chang ◽  
I. A. Dreshaj ◽  
C. F. Farver ◽  
...  

This study was undertaken to characterize changes in the tachykinin system induced by hyperoxic exposure and the potential effects on airway contractile responses. We exposed 7-day-old rat pups to either room air or hyperoxia (> 95% O2) for 7 days to assess pulmonary beta-preprotachykinin (beta-PPT) gene expression, substance P (SP) levels, and airway contractile responses to cholinergic stimulation before and after neurokinin-1 (NK1) receptor blockade. Lung beta-PPT mRNA expression, lung and tracheal SP levels, and contractile responses to exogenous acetylcholine and electrical field stimulation were measured in vitro in normoxia- and hyperoxia-exposed tracheal cylinders. Hyperoxia caused a 1.1- to 2.6-fold increase in steady-state lung beta-PPT mRNA and a 50 and 32% increase in SP levels of lung and trachea, respectively. In response to cholinergic stimulation, maximal contractile force (Emax) of hyperoxia exposed tracheal muscle was significantly higher than for normoxic controls. Addition of the SP (NK1) receptor blocker CP-99994 (10 microM) decreased sensitivity to electrical field stimulation in both hyperoxic and normoxic trachea without a significant decline in Emax. These data provide evidence for both increased SP production and enhanced maximal contractile responses of hyperoxia-exposed neonatal trachea to cholinergic stimulation. The tachykinin peptide SP does not, however, appear to play a major role in the enhanced airway reactivity associated with hyperoxic lung injury during early postnatal life.

1984 ◽  
Vol 62 (8) ◽  
pp. 912-918 ◽  
Author(s):  
Yasushi Sakai ◽  
Edwin E. Daniel

Innervation of circular muscle of the canine stomach studied in vitro was investigated by subjecting muscle strips to electrical field stimulation. Strips were cut from the lesser curvature of the gastric corpus and stimulated with 10-s trains of 0.5-ms pulses at 0.5–20 Hz, 40 V. Most responses were classified into one of three types. In general, field stimulation tended to elicit sequences of varying magnitudes of transient on-contraction, on-relaxation, off-relaxation, off-contraction. Responses were abolished by tetrodotoxin. On-contraction was almost abolished by atropine plus desensitization by 5-hydroxytryptamine (5-HT) or substance P. On-relaxation and off-relaxation were not affected by adrenergic blockade, methysergide, apamin, or 4-aminopyridine. ATP usually caused contraction and slightly diminished relaxation to field stimulation. Vasoactive intestinal polypeptide (VIP) had little effect on tone and response to field stimulation. Relaxation disappeared after scorpion venom treatment. This probably resulted from depletion of the transmitter which mediates relaxation. Off-contraction was reduced by atropine, desensitization by 5-HT or substance P, cromoglycate, indomethacin or ATP, but was not affected by adrenergic blockade, hexamethonium, methysergide, mepyramine, or VIP. The findings suggest that innervation of gastric corpus circular muscle included excitatory cholinergic and both excitatory and inhibitory noncholinergic, nonadrenergic innervation. However, the responses of circular muscle to field stimulation in vitro were drastically different from those obtained previously in vivo, suggesting damage or altered inputs to circular muscle when strips of circular muscle are studied.


1987 ◽  
Vol 63 (4) ◽  
pp. 1401-1405 ◽  
Author(s):  
K. Sekizawa ◽  
J. Tamaoki ◽  
J. A. Nadel ◽  
D. B. Borson

To determine the role of endogenous enkephalinase (EC 3.4.24.11) in regulating peptide-induced contraction of airway smooth muscle, we studied the effect of the enkephalinase inhibitor, leucine-thiorphan (Leu-thiorphan), on responses of isolated ferret tracheal smooth muscle segments to substance P (SP) and to electrical field stimulation (EFS). Leu-thiorphan shifted the dose-response curve to SP to lower concentrations. Atropine or the SP antagonist [D-Pro2,D-Trp7,9]SP significantly inhibited SP-induced contractions in the presence of Leu-thiorphan. Leu-thiorphan increased the contractile responses to EFS dose dependently, an effect that was significantly inhibited by the SP antagonist [D-Pro2,D-Trp7,9]SP. SP, in a concentration that did not cause contraction, increased the contractile responses to EFS. This effect was augmented by Leu-thiorphan dose dependently and was not inhibited by hexamethonium or by phentolamine but was inhibited by atropine. Because contractile responses to acetylcholine were not significantly affected by SP or by Leu-thiorphan, the potentiating effects of SP were probably on presynaptic-postganglionic cholinergic neurotransmission. Captopril, bestatin, or leupeptin did not augment contractions, suggesting that enkephalinase was responsible for the effects. These results suggest that endogenous tachykinins modulate smooth muscle contraction and endogenous enkephalinase modulates contractions produced by endogenous or exogenous tachykinins and tachykinin-induced facilitation of cholinergic neurotransmission.


1997 ◽  
Vol 273 (2) ◽  
pp. G456-G463 ◽  
Author(s):  
M. C. Baccari ◽  
C. Iacoviello ◽  
F. Calamai

The effects of the nitric oxide (NO) synthesis inhibitors, NG-nitro-L-arginine (L-NNA) and NG-nitro-L-arginine methyl ester (L-NAME), on the electrical field stimulation (EFS)-induced inhibitory responses were investigated. EFS caused, in strips contracted by means of substance P (SP), prostaglandin F2 alpha (PGF2 alpha), or carbachol (CCh), a fast relaxant response that, depending on stimulation frequency and strip tension, could be followed by a slower, sustained relaxation. The NO synthesis inhibitors blocked the EFS-induced fast relaxations and often reversed them into contractions; these effects were greatly counteracted in SP- or PGF2 alpha-treated strips by scopolamine or atropine. In CCh-precontracted strips, either L-NNA or L-NAME became progressively unable to block the EFS-induced fast relaxations as the CCh concentration was increased. The NO synthesis inhibitors greatly reduced the sustained relaxant responses elicited either by EFS or exogenous vasoactive intestinal polypeptide (VIP). The results indicate that the NO synthesis inhibitors abolish the neurally induced fast relaxation by interfering with the cholinergic excitatory pathway. The involvement of both VIP and NO in sustained relaxations is also suggested.


1998 ◽  
Vol 274 (2) ◽  
pp. L220-L225 ◽  
Author(s):  
I. McGrogan ◽  
L. J. Janssen ◽  
J. Wattie ◽  
P. M. O’Byrne ◽  
E. E. Daniel

To investigate the role of prostaglandin (PG) E2 in allergen-induced hyperresponsiveness, dogs inhaled either the allergen Ascaris suum or vehicle (Sham). Twenty-four hours after inhalation, some animals exposed to allergen demonstrated an increased responsiveness to acetylcholine challenge in vivo (Hyp-Resp), whereas others did not (Non-Resp). Strips of tracheal smooth muscle, either epithelium intact or epithelium denuded, were suspended on stimulating electrodes, and a concentration-response curve to carbachol (10−9 to 10−5 M) was generated. Tissues received electrical field stimulation, and organ bath fluid was collected to determine PGE2content. With the epithelium present, all three groups contracted similarly to 10−5 M carbachol, whereas epithelium-denuded tissues from animals that inhaled allergen contracted more than tissues from Sham dogs. In response to electrical field stimulation, Hyp-Resp tissues contracted less than Sham tissues in the presence of epithelium and more than Sham tissues in the absence of epithelium. PGE2release in the muscle bath was greater in Non-Resp tissues than in Sham or Hyp-Resp tissues when the epithelium was present. Removal of the epithelium greatly inhibited PGE2release. We conclude that tracheal smooth muscle is hyperresponsive in vitro after in vivo allergen exposure only when the modulatory effect of the epithelium, largely through PGE2 release, is removed.


1984 ◽  
Vol 57 (1) ◽  
pp. 129-134 ◽  
Author(s):  
E. H. Walters ◽  
P. M. O'Byrne ◽  
L. M. Fabbri ◽  
P. D. Graf ◽  
M. J. Holtzman ◽  
...  

Contractile responses of canine tracheal smooth muscle to electrical field stimulation diminished over a 2-h period of incubation. However, addition of indomethacin (10(-5) M) for a similar time not only prevented this inhibition of contractile response, but actually markedly increased the response to electrical field stimulation, suggesting that prostaglandins were responsible for the time-dependent inhibition. Measured prostaglandin E2 increased in the tissue bath over 2 h in control tissues. Addition of prostaglandin E2 to the tissue produced similar inhibition of contractile responses to electrical field stimulation in a concentration-dependent manner. In contrast, incubation alone, treatment with indomethacin, or addition of prostaglandin E2 had little, if any, effect on contractions induced by acetylcholine. We conclude that the release of prostaglandins from canine tracheal smooth muscle that occurs with time has a predominantly inhibitory effect on cholinergic neurotransmission at a prejunctional site.


1976 ◽  
Vol 41 (5) ◽  
pp. 764-771 ◽  
Author(s):  
J. Richardson ◽  
J. Beland

Human airways, from the middle of the trachea to the distal bronchi, were studied in vitro for the presence of inhibitory nerves. The tissue was obtained from operations and from recent autopsies. Electrical field stimulation of the tissues demonstrated cholinergic, excitatory nerves and their effect was blocked by atropine. Field stimulation of the tissues, in the presence of atropine, relaxed the smooth muscle even when the muscle was contracted by histamine. The field stimulation-induced relaxation was neither blocked nor modified by adrenergic blocking agents. Maximum relaxation of the bronchial muscle was obtained with a pulse duration of 1–2 ms, 70 V,and frequencies of 20 Hz and greater. The tracheal smooth muscle showed 85%of maximal relaxation with a frequency of 10 Hz. Tetrodotoxin, blocked the field stimulation-induced relaxation for pulse durations of 2 ms; this indicated that nerves were being stimulated. The airway system shows some of the characteristics of the nonadrenergic inhibitory system in the gastrointestinal tract and of the system reported in the guinea pig trachealis muscle.No evidence of adrenergic inhibitory fibers was found in the bronchial muscle with either pharmacological or histochemical techniques. These findings suggest that the nonadrenergic inhibitory system is the principal inhibitory system for the smooth muscle of human airways. We suggest that a defect in the airway system, such as that shown in the gastrointestinal tract, may be an explanation for the hyperreactive airways of asthma and chronic bronchitis.


Sign in / Sign up

Export Citation Format

Share Document