Garlic prevents hypoxic pulmonary hypertension in rats

1998 ◽  
Vol 275 (2) ◽  
pp. L283-L287 ◽  
Author(s):  
Michael B. Fallon ◽  
Gary A. Abrams ◽  
Tarek T. Abdel-Razek ◽  
Jun Dai ◽  
Shi-Juan Chen ◽  
...  

Hypoxic pulmonary vasoconstriction underlies the development of high-altitude pulmonary edema. Anecdotal observations suggest a beneficial effect of garlic in preventing high-altitude symptoms. To determine whether garlic influences pulmonary vasoconstriction, we assessed the effect of garlic on pulmonary pressures in rats subjected to alveolar hypoxia and on vasoconstriction in isolated pulmonary arterial rings. Garlic gavage (100 mg/kg body wt) for 5 days resulted in complete inhibition of acute hypoxic pulmonary vasoconstriction compared with the control group. No difference in mean arterial pressure or heart rate response to hypoxia was seen between the groups. Garlic solution resulted in a significant dose-dependent vasorelaxation in both endothelium-intact and mechanically endothelium-disrupted pulmonary arterial rings. The administration of N G-nitro-l-arginine methyl ester (a nitric oxide synthase inhibitor) inhibited the vasodilatory effect of garlic by 80%. These studies document that garlic blocks hypoxic pulmonary hypertension in vivo and demonstrate a combination of endothelium-dependent and -independent mechanisms for the effect in pulmonary arterial rings.

2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


1993 ◽  
Vol 74 (3) ◽  
pp. 1061-1065 ◽  
Author(s):  
L. Zhao ◽  
D. E. Crawley ◽  
J. M. Hughes ◽  
T. W. Evans ◽  
R. J. Winter

We have investigated the role of endothelium-derived relaxing factor in modulating hypoxic pulmonary vasoconstriction by inhibiting its synthesis with the false substrate NG-monomethyl-L-arginine (L-NMMA) in the isolated blood-perfused lungs of Wistar rats after chronic hypoxia (CH, fractional inspiratory O2 concentration 10%) for 15 h, 2 days, and 7 days. Lungs were perfused with blood of normal hematocrit at constant flow (18 ml/min) ventilated with 1) 95% air-5% CO2 (normoxia) and 2) 2% O2–5% CO2-93% N2 (hypoxia) and were studied in the absence and presence of L-NMMA (30 and 300 microM) or L-arginine (L-Arg, 1 and 6 mM) in separate groups. Pulmonary arterial pressure (Ppa) rose incrementally with hypoxic exposure (all P < 0.05 vs. normoxic control group). Hypoxic pulmonary vasoconstriction (HPV) was markedly reduced after 15 h and 2 days of CH: the mean increases in Ppa (delta Ppa) in hypoxia were 15.3, 3.5, 3.8, and 13.6 mmHg in control rats and rats exposed to 15 h (P < 0.05 vs. control and 7 days of CH), 2 days (P < 0.001 vs. control and 7 days of CH), and 7 days of CH, respectively. Ppa in control rats and rats exposed to 15 h, 2 days, and 7 days of CH were 137, 179, 184, and 166% of control, respectively, after 30 microM L-NMMA (all P < 0.05 when expressed as percent change vs. no L-NMMA). Similar augmentation in HPV was seen after 30 microM L-NMMA, with all hypoxic groups having a greater response than control groups.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 64 (6) ◽  
pp. 2538-2543 ◽  
Author(s):  
A. J. Lonigro ◽  
R. S. Sprague ◽  
A. H. Stephenson ◽  
T. E. Dahms

Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.


2012 ◽  
Vol 92 (1) ◽  
pp. 367-520 ◽  
Author(s):  
J. T. Sylvester ◽  
Larissa A. Shimoda ◽  
Philip I. Aaronson ◽  
Jeremy P. T. Ward

It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.


1995 ◽  
Vol 83 (3) ◽  
pp. 552-556. ◽  
Author(s):  
Stephan A. Loer ◽  
Thomas W. L. Scheeren ◽  
Jorg Tarnow

Background Inhalational anesthetics inhibit hypoxic pulmonary vasoconstriction (HPV) in vivo and in vitro with a half-maximum inhibiting effect (ED50) within concentrations applied for general anesthesia. Because it is unknown whether desflurane acts likewise, we studied its effect on HPV in isolated blood-perfused rabbit lungs and compared its ED50 with that of halothane. Methods Isolated blood-perfused rabbit lungs were randomly allocated to treatment with either desflurane (n = 6) or halothane (n = 6). HPV, defined as an increase in pulmonary arterial pressure (PAP) at constant flow, was elicited by decreasing inspiratory oxygen concentration from 20% to 3% for 4 min. This effect was determined without (control HPV) and with increasing concentrations of the anesthetics (fraction of inspired carbon dioxide kept constant at 4.8 +/- 0.2%, perfusate temperature at 37 degrees C, and blood flow at 100 ml.min-1). Results Before exposure to the anesthetics, PAP increased by 8.6 +/- 1.9 cmH2O for all lungs within 4 min of hypoxia (control PAP for all lungs 19.6 +/- 2.5 cmH2O). Desflurane decreased this effect in a concentration-dependent fashion with an ED50 of 14.5%, compared with that of halothane, with an ED50 of 1.7%. Conclusions Assuming that 1 minimum alveolar concentration (MAC) values of desflurane and halothane for rabbits are 8.9% and 1.39%, respectively, this study yields ED50 values for the inhibition of HPV of approximately 1.6 MAC for desflurane and 1.2 MAC for halothane (P not statistically significant).


1996 ◽  
Vol 8 (3) ◽  
pp. 431 ◽  
Author(s):  
V DeMarco ◽  
JW Skimming ◽  
TM Ellis ◽  
S Cassin

Others have shown that inhaled nitric oxide causes reversal of pulmonary hypertension in anaesthetized perinatal sheep. The present study examined haemodynamic responses to inhaled NO in the normal and constricted pulmonary circulation of unanaesthetized newborn lambs. Three experiments were conducted on each of 7 lambs. First, to determine a minimum concentration of NO which could reverse acute pulmonary hypertension caused by infusion of the thromboxame mimic U46619, the haemodynamic effects of 5 different doses of inhaled NO were examined. Second, the effects of inhaling 80 ppm NO during hypoxic pulmonary vasoconstriction were examined. Finally, to determine if tachyphalaxis occurs during NO inhalation, lambs were exposed to 80 ppm NO for 3 h during which time pulmonary arterial pressure was doubled by infusion of U46619. Breathing NO (80 ppm) caused a slight but significant decrease in pulmonary vascular resistance (PVR) in lambs with normal pulmonary arterial pressure (PAP). Nitric oxide, inhaled at concentrations between 10 and 80 ppm for 6 min (F1O2 = 0.60), caused decreases in PVR when PAP was elevated with U46619. Nitric oxide acted selectively on the pulmonary circulation, i.e. no changes occurred in systemic arterial pressure or any other measured variable. Breathing 80 ppm NO for 6 min reversed hypoxic pulmonary vasoconstriction. In the chronic exposure study, inhaling 80 ppm NO for 3 h completely reversed U46619-induced pulmonary hypertension. Although arterial methaemoglobin increased during the 3-h exposure to 80 ppm NO, there was no indication that this concentration of NO impairs oxygen loading. These data demonstrate that NO, at concentrations as low as 10 ppm, is a potent, rapid-action, and selective pulmonary vasodilator in unanaesthetized newborn lambs with elevated pulmonary tone. Furthermore, these data support the use of inhaled NO for treatment of infants with pulmonary hypertension.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Dustin R Fraidenburg ◽  
Haiyang Tang ◽  
Abigail Drennan ◽  
Jason X Yuan

Background: Vasoactive intestinal peptide (VIP) is an endogenous hormone that is known to relax vascular smooth muscle and has established anti-proliferative and immunomodulatory effects in the pulmonary circulation making it an attractive therapeutic target in pulmonary arterial hypertension (PAH). In the current study, a polymer-based nanocarrier (protected graft copolymer - PGC) formulation of VIP, which has been shown to increase the potency and duration of action of VIP, is used to show both acute vasodilatory effects and chronic therapeutic effects in experimental animal models of pulmonary hypertension. Methods: The isolated perfused mouse lung preparation is utilized to test acute hypoxic pulmonary vasoconstriction (HPV) in mice. Two animal models of pulmonary hypertension are used in preventative experiments, chronic hypoxic pulmonary hypertension in mice and monocrotaline-induced pulmonary hypertension in rats. Right ventricular systolic pressure and Fulton’s index (weight ratio of RV/[LV+Septum]) are used for measures of pulmonary hemodynamics and RV hypertrophy respectively. Results: PGC-VIP decreased resting pulmonary artery pressure and attenuated acute HPV elicited by 1% inhaled oxygen tension in a dose dependent manner from 0.1 μM to 1.0 μM. After four weeks of chronic hypoxia, both RVSP measurements and Fulton’s index were significantly decreased in mice receiving 100 mg/kg intraperitoneal PGC-VIP every other day compared to vehicle control. Higher doses were associated with mortality in the treatment group. MCT-PH rats receiving subcutaneous PGC-VIP at a dose of 250 mg/kg failed to show improvement in RVSP or Fulton’s index compared to vehicle control. Conclusion: This novel formulation of VIP demonstrates both acute and chronic vasodilatory effects in the pulmonary circulation. Treatment with PGC-VIP can attenuate the development of hypoxic pulmonary hypertension, yet significant mortality is seen at higher doses. Subcutaneous injection failed to attenuate the development of experimental PH in rats, possibly due to an ineffective dose or route of administration. Further studies are underway to identify the ideal dosing strategy necessary to attenuate and potentially reverse experimental PH in animal models.


2001 ◽  
Vol 280 (5) ◽  
pp. L856-L865 ◽  
Author(s):  
Q. Liu ◽  
J. S. K. Sham ◽  
L. A. Shimoda ◽  
J. T. Sylvester

To determine the role of endothelium in hypoxic pulmonary vasoconstriction (HPV), we measured vasomotor responses to hypoxia in isolated seventh-generation porcine pulmonary arteries < 300 μm in diameter with (E+) and without endothelium. In E+ pulmonary arteries, hypoxia decreased the vascular intraluminal diameter measured at a constant transmural pressure. These constrictions were complete in 30–40 min; maximum at Po 2 of 2 mmHg; half-maximal at Po 2 of 40 mmHg; blocked by exposure to Ca2+-free conditions, nifedipine, or ryanodine; and absent in E+ bronchial arteries of similar size. Hypoxic constrictions were unaltered by indomethacin, enhanced by indomethacin plus N G-nitro-l-arginine methyl ester, abolished by BQ-123 or endothelial denudation, and restored in endothelium-denuded pulmonary arteries pretreated with 10−10 M endothelin-1 (ET-1). Given previous demonstrations that hypoxia caused contractions in isolated pulmonary arterial myocytes and that ET-1 receptor antagonists inhibited HPV in intact animals, our results suggest that full in vivo expression of HPV requires basal release of ET-1 from the endothelium to facilitate mechanisms of hypoxic reactivity in pulmonary arterial smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document