Physiological responses of a rodent to heliox reveal constancy of evaporative water loss under perturbing environmental conditions

2014 ◽  
Vol 307 (8) ◽  
pp. R1042-R1048 ◽  
Author(s):  
Christine Elizabeth Cooper ◽  
Philip Carew Withers

Total evaporative water loss of endotherms is assumed to be determined essentially by biophysics, at least at temperatures below thermoneutrality, with evaporative water loss determined by the water vapor deficit between the animal and the ambient air. We present here evidence, based on the first measurements of evaporative water loss for a small mammal in heliox, that mammals may have a previously unappreciated ability to maintain acute constancy of total evaporative water loss under perturbing environmental conditions. Thermoregulatory responses of ash-grey mice ( Pseudomys albocinereus) to heliox were as expected, with changes in metabolic rate, conductance, and respiratory ventilation consistent with maintaining constancy of body temperature under conditions of enhanced heat loss. However, evaporative water loss did not increase in heliox. This is despite our confirmation of the physical effect that heliox augments evaporation from nonliving surfaces, which should increase cutaneous water loss, and increases minute volume of live ash-grey mice in heliox to accommodate their elevated metabolic rate, which should increase respiratory water loss. Therefore, mice had not only a thermoregulatory but also a hygroregulatory response to heliox. We interpret these results as evidence that ash-grey mice can acutely control their evaporative water loss under perturbing environmental conditions and suggest that hygroregulation at and below thermoneutrality is an important aspect of the physiology of at least some small mammals.

2001 ◽  
Vol 204 (21) ◽  
pp. 3803-3814 ◽  
Author(s):  
Gilead Michaeli ◽  
Berry Pinshow

SUMMARY We assessed respiratory and cutaneous water loss in trained tippler pigeons (Columba livia) both at rest and in free flight. In resting pigeons, exhaled air temperature Tex increased with ambient air temperature Ta (Tex=16.3+0.705Ta) between 15°C and 30°C, while tidal volume VT (VT=4.7±1.0 ml, mean ± s.d. at standard temperature and pressure dry) and breathing frequency fR (fR=0.46±0.06 breaths s–1) were independent of Ta. Respiratory water loss, RWL, was constant over the range of Ta (RWL=1.2±0.4 mg g–1 h–1) used. In flying pigeons, Tex increased with Ta (Tex=25.8+0.34Ta), while fR was independent of Ta (fR=5.6±1.4 breaths s–1) between 8.8°C and 27°C. Breathing frequency varied intermittently between 2 and 8 breaths s–1 during flight and was not always synchronized with wing-beat frequency. RWL was independent of air temperature (RWL=9.2±2.9 mg g–1 h–1), but decreased with increasing inspired air water vapor density (ρin) (RWL=12.5–0.362ρin), whereas cutaneous water loss, CWL, increased with air temperature (CWL=10.122+0.898Ta), but was independent of ρin. RWL was 25.7–32.2 %, while CWL was 67.8–74.3 % of the total evaporative water loss. The data indicate that pigeons have more efficient countercurrent heat exchange in their anterior respiratory passages when at rest than in flight, allowing them to recover more water at rest at lower air temperatures. When evaporative water loss increases in flight, especially at high Ta, the major component is cutaneous rather than respiratory, possibly brought about by reducing the skin water vapor diffusion resistance. Because of the tight restrictions imposed by gas exchange in flight, the amount of water potentially lost through respiration is limited.


2018 ◽  
Vol 91 (4) ◽  
pp. 950-966
Author(s):  
Scott Jarvie ◽  
Tim Jowett ◽  
Michael B. Thompson ◽  
Philip J. Seddon ◽  
Alison Cree

Sign in / Sign up

Export Citation Format

Share Document