Hyperventilation alters arterial baroreflex control of heart rate and muscle sympathetic nerve activity

2000 ◽  
Vol 279 (2) ◽  
pp. H536-H541 ◽  
Author(s):  
Philippe Van de Borne ◽  
Silvia Mezzetti ◽  
Nicola Montano ◽  
Krzysztof Narkiewicz ◽  
Jean Paul Degaute ◽  
...  

Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the α index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 ± 24 to 1,499 ± 84 ml and raised SBP from 118 ± 2 to 125 ± 3 mmHg, whereas RR decreased from 947 ± 18 to 855 ± 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 ± 1 to 9 ± 1 ms/mmHg, P < 0.001) and MSNA levels (by −37 ± 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.

2002 ◽  
Vol 93 (3) ◽  
pp. 857-864 ◽  
Author(s):  
John R. Halliwill ◽  
Christopher T. Minson

We tested the hypothesis that acute hypoxia would alter the sensitivity of arterial baroreflex control of both heart rate and sympathetic vasoconstrictor outflow. In 16 healthy, nonsmoking, normotensive subjects (8 women, 8 men, age 20–33 yr), we assessed baroreflex control of heart rate and muscle sympathetic nerve activity by using the modified Oxford technique during both normoxia and hypoxia (12% O2). Compared with normoxia, hypoxia reduced arterial O2 saturation levels from 96.8 ± 0.3 to 80.7 ± 1.4% ( P < 0.001), increased heart rate from 59.8 ± 2.4 to 79.4 ± 2.9 beats/min ( P < 0.001), increased mean arterial pressure from 96.7 ± 2.5 to 105.0 ± 3.3 mmHg ( P = 0.002), and increased sympathetic activity 126 ± 58% ( P < 0.05). The sensitivity for baroreflex control of both heart rate and sympathetic activity was not altered by hypoxia (heart rate: −1.02 ± 0.09 vs. −1.02 ± 0.11 beats · min−1 · mmHg−1; nerve activity: −5.6 ± 0.9 vs. −6.2 ± 0.9 integrated activity · beat−1 · mmHg−1; both P > 0.05). Acute exposure to hypoxia reset baroreflex control of both heart rate and sympathetic activity to higher pressures without changes in baroreflex sensitivity.


2018 ◽  
Vol 103 (10) ◽  
pp. 1318-1325 ◽  
Author(s):  
Lauro C. Vianna ◽  
Igor A. Fernandes ◽  
Daniel G. Martinez ◽  
André L. Teixeira ◽  
Bruno M. Silva ◽  
...  

1996 ◽  
Vol 270 (6) ◽  
pp. R1361-R1370 ◽  
Author(s):  
J. L. Liu ◽  
H. Murakami ◽  
I. H. Zucker

Recent data suggest that nitric oxide (NO) plays a role in the modulation of sympathetic nerve activity and baroreflex sensitivity. Most of these studies have been carried out in anesthetized preparations, and little if any comparison has been made on the relative role of NO on the baroreflex control of heart rate and sympathetic nerve activity. In the present studies, the effect of the NO synthase inhibitor NG-nitro-L-arginine (L-NNA) on the baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) were investigated in conscious, instrumented rabbits. Intravenous bolus injections of 13 mg/kg of L-NNA decreased baseline HR (from 205.0 +/- 6.0 to 145.5 +/- 8.2 beats/min; P < 0.05) without significant changes in mean arterial pressure (MAP) and RSNA. L-NNA significantly reduced the lower plateau of the HR-MAP curves and increased the sensitivities of baroreflex control of HR and RSNA. L-Arginine (600 mg/kg i.v.) but not D-arginine reversed the above effects. The effects of L-NNA on baseline HR were not completely blocked by metoprolol (2 mg/kg) or by atropine (0.2 mg/kg). After pretreatment with metoprolol, baroreflex sensitivity was reduced and L-NNA increased baroreflex sensitivity back to the control level. After pretreatment with atropine, L-NNA still reduced the lower plateau but did not significantly affect baroreflex sensitivity. L-NNA increased the HR responses but not the RSNA response to electrical stimulation of the aortic nerve in chloralose-anesthetized, sinoaortic-denervated (SAD) rabbits. L-NNA had no effect on the HR response to right vagal stimulation. In both conscious intact and SAD rabbits, L-NNA did not increase baseline RSNA. These results suggest that endogenous NO decreases baroreflex control of HR and RSNA. Both sympathetic and parasympathetic components play a role in the effects of NO on the baroreflex control of HR. The effects of NO in the central nervous system play a more important role in the baroreflex control of HR than of RSNA.


2019 ◽  
Vol 317 (2) ◽  
pp. R280-R288 ◽  
Author(s):  
Jian Cui ◽  
Rachel C. Drew ◽  
Matthew D. Muller ◽  
Cheryl Blaha ◽  
Virginia Gonzalez ◽  
...  

Smoking is a risk factor for cardiovascular diseases. Prior reports showed a transient increase in blood pressure (BP) following a spontaneous burst of muscle sympathetic nerve activity (MSNA). We hypothesized that this pressor response would be accentuated in smokers. Using signal-averaging techniques, we examined the BP (Finometer) response to MSNA in 18 otherwise healthy smokers and 42 healthy nonsmokers during resting conditions. The sensitivities of baroreflex control of MSNA and heart rate were also assessed. The mean resting MSNA, heart rate, and mean arterial pressure (MAP) were higher in smokers than nonsmokers. The MAP increase following a burst of MSNA was significantly greater in smokers than nonsmokers (Δ3.4 ± 0.3 vs. Δ1.6 ± 0.1 mmHg, P < 0.001). The baroreflex sensitivity (BRS) of burst incidence, burst area, or total activity was not different between the two groups. However, cardiac BRS was lower in smokers than nonsmokers (14.6 ± 1.7 vs. 24.6 ± 1.5 ms/mmHg, P < 0.001). Moreover, the MAP increase following a burst was negatively correlated with the cardiac BRS. These observations suggest that habitual smoking in otherwise healthy individuals raises the MAP increase following spontaneous MSNA and that the attenuated cardiac BRS in the smokers was a contributing factor. We speculate that the accentuated pressor increase in response to spontaneous MSNA may contribute to the elevated resting BP in the smokers.


2009 ◽  
Vol 106 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
Scott L. Davis ◽  
David A. Low ◽  
David M. Keller ◽  
...  

Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating ( P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Anthony V Incognito ◽  
Milena Samora ◽  
Andrew D Shepherd ◽  
Roberta A Cartafina ◽  
Gabriel MN Guimarães ◽  
...  

2015 ◽  
Vol 308 (9) ◽  
pp. H1096-H1102 ◽  
Author(s):  
Raphaela V. Groehs ◽  
Edgar Toschi-Dias ◽  
Ligia M. Antunes-Correa ◽  
Patrícia F. Trevizan ◽  
Maria Urbana P. B. Rondon ◽  
...  

Arterial baroreflex control of muscle sympathetic nerve activity (ABRMSNA) is impaired in chronic systolic heart failure (CHF). The purpose of the study was to test the hypothesis that exercise training would improve the gain and reduce the time delay of ABRMSNA in CHF patients. Twenty-six CHF patients, New York Heart Association Functional Class II-III, EF ≤ 40%, peak V̇o2 ≤ 20 ml·kg−1·min−1 were divided into two groups: untrained (UT, n = 13, 57 ± 3 years) and exercise trained (ET, n = 13, 49 ± 3 years). Muscle sympathetic nerve activity (MSNA) was directly recorded by microneurography technique. Arterial pressure was measured on a beat-to-beat basis. Time series of MSNA and systolic arterial pressure were analyzed by autoregressive spectral analysis. The gain and time delay of ABRMSNA was obtained by bivariate autoregressive analysis. Exercise training was performed on a cycle ergometer at moderate intensity, three 60-min sessions per week for 16 wk. Baseline MSNA, gain and time delay of ABRMSNA, and low frequency of MSNA (LFMSNA) to high-frequency ratio (HFMSNA) (LFMSNA/HFMSNA) were similar between groups. ET significantly decreased MSNA. MSNA was unchanged in the UT patients. The gain and time delay of ABRMSNA were unchanged in the ET patients. In contrast, the gain of ABRMSNA was significantly reduced [3.5 ± 0.7 vs. 1.8 ± 0.2, arbitrary units (au)/mmHg, P = 0.04] and the time delay of ABRMSNA was significantly increased (4.6 ± 0.8 vs. 7.9 ± 1.0 s, P = 0.05) in the UT patients. LFMSNA-to-HFMSNA ratio tended to be lower in the ET patients ( P < 0.08). Exercise training prevents the deterioration of ABRMSNA in CHF patients.


Sign in / Sign up

Export Citation Format

Share Document