scholarly journals Effects of estrogen replacement on stress-induced cardiovascular responses via renin-angiotensin system in ovariectomized rats

2016 ◽  
Vol 311 (5) ◽  
pp. R898-R905 ◽  
Author(s):  
Shoko Tazumi ◽  
Naoko Yokota ◽  
Mizuho Kawakami ◽  
Sayo Omoto ◽  
Akira Takamata ◽  
...  

The purpose of this study was to determine whether chronic estrogen replacement in ovariectomized rats inhibits the pressor response to psychological stress by attenuating the activation of the renin-angiotensin system. Female Wistar rats aged 9 wk were ovariectomized. After 4 wk, the rats were randomly assigned to be implanted subcutaneously with pellets containing either 17β-estradiol (E2) or placebo (Pla). After 4 wk of treatment, the rats underwent cage-switch stress and, in a separate experiment, a subset received an infusion of angiotensin II. The cage-switch stress rapidly elevated blood pressure (BP) and heart rate (HR) as measured by radiotelemetry in both groups. However, the BP and HR responses to the stress were significantly attenuated in the E2 group compared with the Pla group. An angiotensin II type 1 receptor blocker, losartan, given in drinking water, abolished the difference in the pressor response to stress between the two groups. Moreover, the stress-induced elevation in plasma renin activity and angiotensin II concentration was significant in the Pla group, but not in the E2 group. In addition, the expression of renin mRNA in the kidney was lower in the E2 group relative to the Pla group. Finally, we found that intravenous angiotensin II infusion increased BP and decreased HR to a similar degree in both groups. These results suggest that the inhibitory effects of estrogen on psychological stress-induced activation of the renin-angiotensin system could be at least partially responsible for the suppression of the pressor responses to psychological stress seen in estrogen-replaced ovariectomized rats.

Hypertension ◽  
2008 ◽  
Vol 51 (4) ◽  
pp. 1170-1176 ◽  
Author(s):  
Julio C. Sartori-Valinotti ◽  
Radu Iliescu ◽  
Licy L. Yanes ◽  
Wanda Dorsett-Martin ◽  
Jane F. Reckelhoff

1989 ◽  
Vol 256 (5) ◽  
pp. H1311-H1315 ◽  
Author(s):  
E. Holtzman ◽  
L. M. Braley ◽  
A. Menachery ◽  
G. H. Williams ◽  
N. K. Hollenberg

When sodium intake in the rat is reduced abruptly from the typical high level to a very low level (0.02%), sodium excretion falls exponentially, with a half time of 2-3 h. The result is that the rat achieves external sodium balance, in which intake equals excretion, on the new low intake within a few hours. In this study, we assessed the rate of activation of the renin-angiotensin-aldosterone axis and its contribution to blood pressure during that interval. Plasma renin activity and angiotensin II concentration had risen sharply within 8 h and did not change over the next 40 h. Plasma aldosterone concentration, on the other hand, continued to rise over 48 h. Within 8 h, blood pressure dependency on angiotensin II had increased sharply, as assessed by depressor responses to an angiotensin antagonist (Sar1-Ala8-angiotensin II) and to converting-enzyme inhibition (captopril). The depressor response to neither agent changed over the next 40 h. The pressor response to angiotensin II was blunted significantly by 8 h and also did not change over the next 40 h. The findings indicate that the rapid tempo of sodium homeostasis in the rat is matched by an equally rapid tempo of activation of the renin-angiotensin system, although the factors responsible for aldosterone release are probably more complex. Experiments to assess the renin-angiotensin system in the rat must be designed with this rapid tempo in mind.


Circulation ◽  
1997 ◽  
Vol 95 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Heribert Schunkert ◽  
A.H. Jan Danser ◽  
Hans-Werner Hense ◽  
Frans H.M. Derkx ◽  
Susanne Ku¨rzinger ◽  
...  

TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


1977 ◽  
Vol 232 (5) ◽  
pp. F434-F437 ◽  
Author(s):  
R. H. Freeman ◽  
J. O. Davis ◽  
W. S. Spielman

Suprarenal aortic constriction sufficient to reduce renal perfusion pressure by approximately 50% increased aldosterone secretion in anesthetized rats pretreated with dexamethasone. Bilateral nephrectomy under the same experimental conditions blocked the aldosterone response. Additionally, [1-sarcosine, 8-alanine]angiotensin II blocked the response in aldosterone secretion to aortic constriction in dexamethasone-treated rats. Finally, in rats hypophysectomized to exclude the influence of ACTH, the aldosterone response to aortic constriction was blocked by [1-sarcosine, 8-alanine]angiotensin II. The results indicate that angiotensin II increased aldosterone secretion during aortic constriction in the rat. These observations, along with those reported previously in sodium-depleted rats, point to an important overall role for the renin-angiotensin system in the control of aldosterone secretion in the rat.


2019 ◽  
Vol 97 (12) ◽  
pp. 1115-1123 ◽  
Author(s):  
Seldag Bekpinar ◽  
Ece Karaca ◽  
Selin Yamakoğlu ◽  
F. İlkay Alp-Yıldırım ◽  
Vakur Olgac ◽  
...  

Cyclosporine, an immunosuppressive drug, exhibits a toxic effect on renal and vascular systems. The present study investigated whether resveratrol treatment alleviates renal and vascular injury induced by cyclosporine. Cyclosporine (25 mg/kg per day, s.c.) was given for 7 days to rats either alone or in combination with resveratrol (10 mg/kg per day, i.p.). Relaxation and contraction responses of aorta were examined. Serum levels of blood urea nitrogen, creatinine, angiotensin II, and angiotensin 1-7 were measured. Histopathological examinations as well as immunostaining for 4-hydroxynonenal and nitrotyrosine were performed in the kidney. RNA expressions of renin–angiotensin system components were also measured in renal and aortic tissues. Cyclosporine decreased the endothelium-dependent relaxation and increased vascular contraction in the aorta. It caused renal tubular degeneration and increased immunostaining for 4-hydroxynonenal, an oxidative stress marker. Cyclosporine also caused upregulations of the vasoconstrictive renin–angiotensin system components in renal (angiotensin-converting enzyme) and aortic (angiotensin II type 1 receptor) tissues. Resveratrol co-treatment prevented the cyclosporine-related deteriorations. Moreover, it induced the expressions of vasodilatory effective angiotensin-converting enzyme 2 and angiotensin II type 2 receptor in aorta and kidney, respectively. We conclude that resveratrol may be effective in preventing cyclosporine-induced renal tubular degeneration and vascular dysfunction at least in part by modulating the renin–angiotensin system.


Sign in / Sign up

Export Citation Format

Share Document