Effect of glucose and other hexoses on efferent discharges of brown adipose tissue nerves

1986 ◽  
Vol 251 (2) ◽  
pp. R240-R242 ◽  
Author(s):  
A. Niijima

The activity of sympathetic nerves innervating interscapular brown adipose tissue of the rat was recorded. Intravenous administrations of glucose (100-300 mg/kg) enhanced the nerve activity. However, mannose, fructose, or galactose (300 mg/kg) showed no effect, suggesting the response is related to diet-induced thermogenesis in the brown adipose tissue.

1993 ◽  
Vol 264 (1) ◽  
pp. R109-R115 ◽  
Author(s):  
M. Egawa ◽  
H. Yoshimatsu ◽  
G. A. Bray

beta-Endorphin was injected into the third cerebroventricle to investigate its effects on sympathetic nerve activity to interscapular brown adipose tissue (IBAT) in rats. Multiunit discharges of sympathetic nerves to IBAT were recorded electrophysiologically in anesthetized rats. The intracerebroventricular injection of beta-endorphin (125, 250, and 500 pmol/rat in 10 microliters) suppressed sympathetic nerve activity in a dose-related fashion (-23.9 +/- 20.4, -38.7 +/- 7.1, and -66.7 +/- 7.6% 30 min after injection) compared with preinjection baseline. N-acetyl-beta-endorphin (250 pmol) had no effect on sympathetic nerve activity to IBAT. The intraperitoneal injection of naloxone (5.0 mg/rat) did not affect sympathetic nerve activity, but preinjection of naloxone inhibited the suppressive effect of intracerebroventricular injection of beta-endorphin (250 pmol). We conclude that the intracerebroventricular administration of beta-endorphin suppressed the sympathetic nerve activity to IBAT through opioid receptors. The results of this experiment are consistent with the hypothesis that beta-endorphin has a reciprocal effect on food intake and the sympathetic nervous system.


1985 ◽  
Vol 248 (1) ◽  
pp. E20-E25 ◽  
Author(s):  
M. Saito ◽  
Y. Minokoshi ◽  
T. Shimazu

The interscapular brown adipose tissue (IBAT) from obese rats with lesions of the ventromedial hypothalamus (VMH) was approximately 5 times heavier than those from controls. This hypertrophy of IBAT was associated with a marked enlargement of constituent adipocytes and their apparent transformation from multiloculated structure of lipid droplets into the uniloculated structure. The rate of fatty acid synthesis in IBAT of the obese rats was less than one-tenth of that in control rats and approximated the value in white adipose tissue (WAT) when they were starved for 24 h. When rats were fed, the synthetic rate was increased, but the lipogenic response of IBAT in the obese rats was much greater than that in controls, the extent of the response being comparable to that of WAT. The IBAT temperature rose rapidly on electrical stimulation of the sympathetic nerves to the tissue in control rats, whereas the temperature response was reduced markedly in the obese rats. It was suggested that thermogenesis in BAT was impaired in obese rats with VMH lesions by decreasing triglyceride turnover in BAT, probably due to dysfunction of the sympathetic nervous system and a consequent transformation of BAT into WAT.


1984 ◽  
Vol 247 (2) ◽  
pp. E181-E189 ◽  
Author(s):  
L. Landsberg ◽  
M. E. Saville ◽  
J. B. Young

The sympathetic nervous system (SNS) plays a critical role in the regulation of mammalian thermogenic responses to cold exposure and dietary intake. Catecholamine-stimulated thermogenesis is mediated by the beta-adrenergic receptor. In the rat brown adipose tissue is the major site of metabolic heat production in response to both cold (nonshivering thermogenesis) and diet (diet-induced thermogenesis). Measurements of norepinephrine turnover rate in interscapular brown adipose tissue of the rat demonstrate increased sympathetic activity in response to both cold exposure and overfeeding. In adult humans, a physiologically significant role for brown adipose tissue has not been established but cannot be excluded. It appears likely that dietary changes in SNS activity are related, at least in part, to the changes in metabolic rate that occur in association with changes in dietary intake.


2016 ◽  
Vol 311 (2) ◽  
pp. H433-H444 ◽  
Author(s):  
Vineet C. Chitravanshi ◽  
Kazumi Kawabe ◽  
Hreday N. Sapru

Hypothalamic arcuate nucleus (ARCN) stimulation elicited increases in sympathetic nerve activity (IBATSNA) and temperature (TBAT) of interscapular brown adipose tissue (IBAT). The role of hypothalamic dorsomedial (DMN) and paraventricular (PVN) nuclei in mediating these responses was studied in urethane-anesthetized, artificially ventilated, male Wistar rats. In different groups of rats, inhibition of neurons in the DMN and PVN by microinjections of muscimol attenuated the increases in IBATSNA and TBAT elicited by microinjections of N-methyl-d-aspartic acid into the ipsilateral ARCN. In other groups of rats, blockade of ionotropic glutamate receptors by combined microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and NBQX into the DMN and PVN attenuated increases in IBATSNA and TBAT elicited by ARCN stimulation. Blockade of melanocortin 3/4 receptors in the DMN and PVN in other groups of rats resulted in attenuation of increases in IBATSNA and TBAT elicited by ipsilateral ARCN stimulation. Microinjections of Fluoro-Gold into the DMN resulted in retrograde labeling of cells in the ipsilateral ARCN, and some of these cells contained proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH), or vesicular glutamate transporter-3. Since similar projections from ARCN to the PVN have been reported by us and others, these results indicate that neurons containing POMC, α-MSH, and glutamate project from the ARCN to the DMN and PVN. Stimulation of ARCN results in the release of α-MSH and glutamate in the DMN and PVN which, in turn, cause increases in IBATSNA and TBAT.


1984 ◽  
Vol 247 (4) ◽  
pp. R650-R654 ◽  
Author(s):  
A. Niijima ◽  
F. Rohner-Jeanrenaud ◽  
B. Jeanrenaud

Previous studies have suggested the presence, in hypothalamic obesity, of an impairment of the energy-dissipating capacity of brown adipose tissue ascribed to a functional disconnection of the sympathetic innervation of this tissue. The following observations demonstrate, with electrophysiological techniques, the presence of a functional link between the ventromedial hypothalamic (VMH) area and the interscapular brown adipose tissue (IBAT) in the rat: the spontaneous activity of the efferent sympathetic nerves reaching the IBAT of normal rats was increased in response to an acute cold stimulus, whereas this increase failed to occur in nerves of VMH-lesioned rats studied 4–7 days after the lesions; and the spontaneous activity of the efferent sympathetic nerves of IBAT decreased rapidly (by greater than or equal to 80% within 30 min) after acute lesions of the VMH area. It is suggested that the VMH area plays a role in increasing the activity of the efferent sympathetic nerves of IBAT during an acute cold stimulus and that alone or in relationship with other, as yet undetermined, central nervous system sites, it has a tonic stimulatory effect on the final common pathways that innervate the IBAT via the efferent sympathetic nerves.


Sign in / Sign up

Export Citation Format

Share Document