Hemodynamic and behavioral effects of angiotensin II in conscious sheep

1990 ◽  
Vol 258 (5) ◽  
pp. R1230-R1237
Author(s):  
B. A. Breuhaus ◽  
J. E. Chimoskey

Intracerebroventricular (ivt) angiotensin II (ANG II) at 0.4, 2, 10, and 50 ng.kg-1.min-1 increased arterial pressure in conscious sheep in a dose-related manner (26 mmHg, P less than 0.05, at 50 ng.kg-1.min-1). Total peripheral resistance (TPR) and right atrial pressure also increased. Heart rate, stroke volume, and cardiac output did not change. Pressor responses to ivt ANG II were not caused by leakage of ANG II into the periphery, because plasma concentrations of ANG II did not change from control (31 +/- 7 pg/ml) at the highest dose of ANG II infused. In contrast, intravenous (iv) ANG II, 10 and 50 ng.kg-1.min-1, increased arterial pressure 29 and 47 mmHg, respectively (P less than 0.05), and decreased heart rate. ANG II, 10 ng.kg-1.min-1 iv, increased plasma ANG II levels from 36 +/- 6 to 354 +/- 69 pg/ml (P less than 0.05). Intracarotid (ic) ANG II, 10 ng.kg-1.min-1, increased arterial pressure 31 mmHg (P less than 0.05) but did not alter heart rate. ANG II ivt caused a dose-related drinking response, with a positive correlation between the amount of water drunk during ivt ANG II infusion and the increase in arterial pressure. Infusions of ANG II at 50 ng.kg-1.min-1 ivt were associated with decreased plasma osmolality and potassium concentration and increased plasma vasopressin concentration.

1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


2006 ◽  
Vol 189 (3) ◽  
pp. 701-710 ◽  
Author(s):  
Christopher J Charles ◽  
Miriam T Rademaker ◽  
A Mark Richards

Whilst the tissue distribution and range of biological actions reported for apelin suggest a role for the peptide in pressure/volume homeostasis, conflicting reports make the precise role unclear. Furthermore, few integrated studies have been performed and there are no reports of bioactivity of apelin in a large animal model. Accordingly, we have examined the haemodynamic, hormonal and renal effects of apelin in ten normal conscious sheep. Apelin (1 mg i.v. bolus) induced a biphasic haemo-dynamic response characterised by an acute fall in arterial pressure and a rise in heart rate followed immediately by a rise in arterial pressure and a fall in heart rate. The secondary hypertensive phase was associated with a fall in cardiac output (P=0.015) and significant rises in calculated total peripheral resistance (CTPR) (P<0.001) and right atrial pressure (RAP) (P=0.031). Electrocardiogram changes were also observed in four of ten sheep, most notably varying degrees of atrioventricular block. Apelin also induced significant rises in plasma arginine vasopressin (P=0.009), adrenocorticotrophin (P=0.012), aldosterone (P=0.001), cortisol (P=0.014), atrial (P=0.036) and brain (P<0.001) natriuretic peptide, cyclic GMP (P=0.003) and cyclic AMP (P=0.002) levels with no effect on renal indices. In conclusion, high dose administration of apelin to normal conscious sheep induces a significant biphasic response in arterial pressure and heart rate associated with rises in RAP and CTPR and a fall in cardiac output. Apelin also increases circulating levels of a number of vasoactive hormones. Taken together, these results suggest a potential role for apelin in pressure/volume homeostasis.


2001 ◽  
Vol 281 (6) ◽  
pp. R1887-R1894 ◽  
Author(s):  
Christopher J. Charles ◽  
M. Gary Nicholls ◽  
Miriam T. Rademaker ◽  
A. Mark Richards

The role of adrenomedullin (ADM) in volume and pressure homeostasis remains undefined. Accordingly, we compared the biological responses to infusions of ADM and nitroprusside (NP; matched for reduction of arterial pressure) and assessed their effects on responses to ANG II and norepinephrine in eight conscious sheep. During matched falls in arterial pressure (8–10 mmHg, both P < 0.001) ADM and NP induced similar increases in heart rate. ADM increased cardiac output ( P < 0.001), and the fall in calculated peripheral resistance was greater with ADM than NP ( P = 0.013). ADM infusions raised plasma ADM levels ( P < 0.001), plasma renin activity ( P = 0.001), and ANG II ( P < 0.001) but tended to blunt any concurrent rise in aldosterone compared with NP ( P = 0.056). ADM maintained both urine flow ( P < 0.001) and sodium excretion ( P = 0.01) compared with falls observed with NP. ADM attenuated the vasopressor actions of exogenous ANG II ( P = 0.006) but not norepinephrine. In addition, ADM antagonized the ANG II-induced rise in plasma aldosterone ( P < 0.001). In conclusion, ADM induces a different spectrum of hemodynamic, renal, and endocrine actions to NP. These results clarify mechanisms by which ADM might contribute to volume and pressure homeostasis.


1989 ◽  
Vol 256 (3) ◽  
pp. R685-R693 ◽  
Author(s):  
B. A. Breuhaus ◽  
K. T. Demarest ◽  
J. E. Chimoskey

Conscious sheep chronically prepared with nonocclusive indwelling vascular and cerebroventricular catheters were used to compare hemodynamic, hematologic, hormonal, and behavioral responses of intracarotid (ic) prostaglandin E2 (PGE2) to intracerebroventricular (ivt) PGE2. PGE2 had less potent hemodynamic effects when infused ivt than when infused ic. Intracarotid PGE2, 100 ng.kg-1.min-1, increased arterial pressure and heart rate 31 mmHg and 26 beats/min, respectively (P less than 0.01), whereas ivt PGE2, 300 ng.kg-1.min-1, did not alter heart rate and increased arterial pressure 9 mmHg (P less than 0.01). Both ic and ivt PGE2 increased packed cell volume 3% (P less than 0.01). Neither ic nor ivt PGE2 caused changes in plasma concentrations of epinephrine or norepinephrine. Despite ivt PGE2S less potent hemodynamic effects, ivt administration of PGE2 decreased plasma osmolality 2 mosmol/kg (P less than 0.05) and sodium concentration 2 meq/l (P less than 0.01) and increased plasma vasopressin concentration 2.5-fold (P less than 0.05). Intracerebroventricular PGE2 also caused some physical and behavioral changes that were not observed during ic PGE2 administration or during ivt infusion of vehicle. These changes included pupillary constriction, vocalization, and coughing. We conclude that PGE2 given ivt may not reach the same sites in the brain as does ic PGE2 or that ivt PGE2 may reach the same sites in different concentrations.


2002 ◽  
Vol 283 (2) ◽  
pp. R451-R459 ◽  
Author(s):  
Ling Xu ◽  
Alan F. Sved

Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng · kg−1 · min−1 iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.


2004 ◽  
Vol 286 (6) ◽  
pp. R1051-R1056 ◽  
Author(s):  
Anna M. D. Watson ◽  
Rasim Mogulkoc ◽  
Robin M. McAllen ◽  
Clive N. May

Central actions of angiotensin play an important role in cardiovascular control and have been implicated in the pathogenesis of hypertension and heart failure. One feature of centrally or peripherally administered angiotensin is that the bradycardia in response to an acute pressor effect is blunted. It is unknown whether after central angiotensin this is due partly to increased cardiac sympathetic nerve activity (CSNA). We recorded CSNA and arterial pressure in conscious sheep, at least 3 days after electrode implantation. The effects of intracerebroventricular infusions of ANG II (3 nmol/h for 30 min) and artificial cerebrospinal fluid (CSF) (1 ml/h) were determined. The response to intracerebroventricular hypertonic saline (0.6 M NaCl in CSF at 1 ml/h) was examined as there is evidence that hypertonic saline acts via angiotensinergic pathways. Intracerebroventricular angiotensin increased CSNA by 23 ± 7% ( P < 0.001) and mean arterial pressure (MAP) by 7.6 ± 1.2 mmHg ( P < 0.001) but did not significantly change heart rate ( n = 5). During intracerebroventricular ANG II the reflex relation between CSNA and diastolic blood pressure was significantly shifted to the right ( P < 0.01). Intracerebroventricular hypertonic saline increased CSNA (+9.4 ± 6.6%, P < 0.05) and MAP but did not alter heart rate. The responses to angiotensin and hypertonic saline were prevented by intracerebroventricular losartan (1 mg/h). In conclusion, in conscious sheep angiotensin acts within the brain to increase CSNA, despite increased MAP. The increase in CSNA may account partly for the lack of bradycardia in response to the increased arterial pressure. The responses to angiotensin and hypertonic saline were losartan sensitive, indicating they were mediated by angiotensin AT-1 receptors.


1987 ◽  
Vol 252 (3) ◽  
pp. H628-H637 ◽  
Author(s):  
J. W. Osborn ◽  
M. M. Skelton ◽  
A. W. Cowley

The mechanisms whereby arginine vasopressin influences hemodynamic and autonomic function were investigated in conscious rats. In normal rats, 60-min intravenous infusions produced dose-related increases of arterial pressure and total peripheral resistance with marked decreases of both heart rate and cardiac output. Cholinergic blockade with methscopolamine attenuated the bradycardia at higher doses of vasopressin, whereby the fall of cardiac output was not affected. beta-Adrenergic blockade with atenolol attenuated the fall of heart rate seen with lower doses of vasopressin but did not prevent the fall of cardiac output. Ganglionic blockade with methscopolamine and hexamethonium resulted in nearly a 60-fold enhancement of vasopressin pressor sensitivity. This was related to a greater rise of peripheral resistance, since the fall of cardiac output was not altered compared with normal rats. Hemodynamic responses to angiotensin II were determined in other groups of conscious, normal rats and rats with ganglionic blockade. Peripheral resistance increased in the normal rats, whereas the related decreases in cardiac output and heart rate were only 30% of the responses seen with equipressor doses of vasopressin. Ganglionic blockade increased pressor activity only two- to eightfold compared with the 60-fold increase observed with vasopressin. We conclude that vasopressin is a more potent vasoconstrictor than angiotensin II, decreases cardiac output independent of neural mechanisms, and results in withdrawal of sympathetic vascular tone to buffer rises of arterial pressure.


1995 ◽  
Vol 268 (6) ◽  
pp. H2302-H2310 ◽  
Author(s):  
G. Weichert ◽  
C. A. Courneya

We examined the response to hemorrhage in conscious normotensive and hypertensive rabbits under control conditions and during efferent blockade of 1) the hormones vasopressin (AVP) and angiotensin II (ANG II), 2) the autonomic nervous system, and 3) autonomic and hormonal inputs. We recorded mean arterial pressure, heart rate, and hindlimb conductance. The response to hemorrhage was unchanged with hormonal blockade alone. Blockade of the autonomic nervous system caused a faster rate of blood pressure decline, but the rate of decrease in hindlimb conductance was maintained at control levels. Blocking the autonomic nervous system and the hormones resulted in rapid blood pressure decline and an increase in hindlimb conductance. Although the three types of efferent blockade had a similar pattern of effects in normotensive and hypertensive rabbits, hypertensive rabbits exhibited less cardiovascular support during hemorrhage than normotensive rabbits. During hemorrhage, hypertensive rabbits had an attenuation of hindlimb vasoconstriction, a reduction in the heart rate-mean arterial pressure relationship, and reduced ability to maintain blood pressure compared with normotensive rabbits.


1997 ◽  
Vol 272 (6) ◽  
pp. R2040-R2047 ◽  
Author(s):  
C. J. Charles ◽  
M. T. Rademaker ◽  
A. M. Richards ◽  
G. J. Cooper ◽  
D. H. Coy ◽  
...  

Adrenomedullin is a recently discovered peptide that has been shown to reduce arterial pressure and induce natriuresis. However, few studies have examined the biological actions of adrenomedullin in conscious animals in an integrative manner. Accordingly, we have examined the hemodynamic, renal, and endocrine actions of adrenomedullin infused intravenously at 10 and 100 ng.kg-1.min-1 (each 90 min) in a vehicle-controlled study in eight normal conscious sheep. Adrenomedullin reduced right atrial pressure (P < 0.05) and diastolic (15 mmHg, P < 0.01) and mean arterial pressure (10 mmHg, P < 0.05) and increased cardiac output (3 l/min, P < 0.001). Total peripheral resistance was reduced 40% (P < 0.001). Urinary sodium was reduced to 35% of control during the 90-min clearance period immediately postinfusion (P < 0.05). Adrenomedullin increased plasma adenosine 3',5'-cyclic monophosphate levels (P < 0.001). Plasma renin activity was elevated during adrenomedullin (P < 0.001) coincident with the peak hypotensive effect, whereas plasma aldosterone was not affected and plasma norepinephrine levels fell (P < 0.05). In conclusion, adrenomedullin had clear blood pressure-lowering effects with increased cardiac output and stimulation of renin but suppressed sympathetic activation in conscious sheep. The physiological implications of these findings require further study.


1984 ◽  
Vol 246 (1) ◽  
pp. H80-H89 ◽  
Author(s):  
G. B. Guo ◽  
F. M. Abboud

We determined whether angiotensin II (ANG II) modulates the arterial baroreflex control of lumbar sympathetic nerve activity (LSNA) in chloralose-anesthetized rabbits. Intravenous infusion (iv) of ANG II caused significantly less reflex bradycardia and less inhibition of LSNA than iv phenylephrine (PE) for equivalent increments in arterial pressure. During a background iv infusion of ANG II, which caused a small sustained increase in arterial pressure, the reflex inhibition of heart rate (HR) and LSNA in response to further increases in pressure with graded doses of PE was attenuated, but the reflex increase in HR and LSNA in response to hypotension with graded doses of nitroprusside was unchanged. This modulation of the baroreflex by ANG II is specific since a similar background infusion of PE did not alter baroreflex responses to further increases or to decreases in arterial pressure. The frequency of aortic baroreceptors was comparable for equivalent increases in pressure caused by iv ANG II or PE. When ANG II was confined to the isolated carotid sinuses, the reflex inhibition of HR and LSNA during distension of carotid sinuses was unchanged. An excitatory effect of ANG II on the efferent limb of the baroreflex that would oppose the reflex bradycardia or inhibition of LSNA is unlikely because when the pressor effect of ANG II was prevented by nitroprusside, there were no changes in HR and LSNA. We conclude that through an effect on the central nervous system iv ANG II has a selective effect on the arterial baroreflex; it impairs reflex decreases in HR and LSNA during hypertension but not reflex increases in HR and LSNA during hypotension.


Sign in / Sign up

Export Citation Format

Share Document