Cardiovascular effects of serotonin in the nucleus of the solitary tract

1995 ◽  
Vol 269 (1) ◽  
pp. R48-R56 ◽  
Author(s):  
P. D. Feldman ◽  
F. J. Galiano

The cardiovascular regulatory role of serotonin [5-hydroxytryptamine (5-HT)] in the solitary tract nucleus (NTS) was investigated in urethan-anesthetized Wistar rats. Unilateral microinjection of 5-HT (5 nmol in 50 nl) into the NTS evoked depressions of both arterial pressure (-20 +/- 1 mmHg) and heart rate (-43 +/- 6 beats/min). Induction of bradycardia and hypotension was repeatable and consistently obtained with injections into the NTS but not into neighboring structures. Microinjection of the nonselective 5-HT receptor antagonist methiothepin or the 5-HT1A/5-HT1B antagonist pindolol prevented any cardiovascular change by subsequent microinjection of 5-HT into the NTS. In contrast, microinjection of the 5-HT2-selective antagonist ketanserin or the 5-HT1A antagonist spiroxatrine had no effect on the subsequent effects of 5-HT. Bilateral vagal denervation prevented the bradycardia induced by 5-HT, whereas the vasodepression remained intact. These data provide evidence that 5-HT in the NTS evokes vagal chronotropic cardioinhibition and sympathetic withdrawal and suggest that this action is mediated by 5-HT1 serotonergic receptors, possibly of the 5-HT1B subtype.

1993 ◽  
Vol 265 (3) ◽  
pp. R524-R529 ◽  
Author(s):  
J. Luk ◽  
I. Ajaelo ◽  
V. Wong ◽  
J. Wong ◽  
D. Chang ◽  
...  

Arginine vasopressin (AVP) elicits a larger decrease in heart rate for a given increase in arterial pressure than do other vasoconstrictors, but there is disagreement as to whether this results from an increase in baroreflex gain or a resetting of the baroreflex to a lower blood pressure. It is also unclear which type of vasopressin receptor mediates the action of vasopressin on the baroreflex. In the present study, the effects of vasopressin, selective vasopressin V1 and V2 receptor agonists, oxytocin, and a vasopressin V1 receptor antagonist on the baroreflex control of heart rate were investigated in conscious, chronically prepared rabbits. Baroreflex curves were generated with intravenous infusions of phenylephrine and nitroprusside and analyzed using a four-parameter logistic model. Intravenous infusion of vasopressin at 5 ng.kg-1.min-1 increased mean arterial pressure by 9 mmHg and decreased heart rate by 31 beats/min. The arterial pressure at the midrange of the baroreflex curve (BP50) decreased from 75.9 +/- 4.8 to 57.6 +/- 1.7 mmHg (P < 0.01), indicating a shift of the baroreflex curve to a lower pressure, but the gain did not change significantly. The actions of vasopressin on blood pressure, heart rate, and BP50 were completely blocked by pretreatment with d(CH2)5[Tyr(Me)2]AVP, a selective V1 receptor antagonist. Infusion of [Phe2,Ile3,Orn8]AVP, a selective V1 receptor agonist, produced cardiovascular effects similar to those of vasopressin and decreased the BP50 of the baroreflex from 73.0 +/- 2.2 to 63.8 +/- 2.2 mmHg (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 307 (11) ◽  
pp. H1539-H1546 ◽  
Author(s):  
Amy C. Arnold ◽  
Debra I. Diz

The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Luciana Jorge ◽  
Demilto Y. da Pureza ◽  
Danielle da Silva Dias ◽  
Filipe Fernandes Conti ◽  
Maria-Cláudia Irigoyen ◽  
...  

The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n=8) and diabetic (n=8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R:103±2versus PE:111±3 mmHg) and HR (R:290±7versus PE:328±10 bpm) reductions and BR dysfunction (R:-0.70±0.06versus PE:-1.21±0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.


2005 ◽  
Vol 289 (5) ◽  
pp. R1416-R1425 ◽  
Author(s):  
Thiago Santos Moreira ◽  
Monica Akemi Sato ◽  
Ana Carolina Thomaz Takakura ◽  
José Vanderlei Menani ◽  
Eduardo Colombari

In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABAA agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 ± 11 and to 142 ± 6 mmHg, respectively, vs. control: 105 ± 4 mmHg; HR to 407 ± 15 and to 412 ± 18 beats per minute (bpm), respectively, vs. control: 352 ± 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 ± 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 ± 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.


2005 ◽  
Vol 288 (6) ◽  
pp. R1553-R1562 ◽  
Author(s):  
Vineet C. Chitravanshi ◽  
Hreday N. Sapru

Microinjections (100 nl) of 0.15, 0.31, 0.62, and 1.25 mmol/l of nociceptin into the medial nucleus tractus solitarius (mNTS) elicited decreases in mean arterial pressure (11 ± 1.8, 20 ± 2.1, 21.5 ± 3.1, and 15.5 ± 1.9 mmHg, respectively) and heart rate (14 ± 2.7, 29 ± 5.5, 39 ± 5.2, and 17.5 ± 3.1 beats/min, respectively). Because maximal responses were elicited by microinjections of 0.62 mmol/l nociceptin, this concentration was used for other experiments. Repeated microinjections of nociceptin (0.62 mmol/l) into the mNTS, at 20-min intervals, did not elicit tachyphylaxis. Bradycardia induced by microinjections of nociceptin into the mNTS was abolished by bilateral vagotomy. The decreases in mean arterial pressure and heart rate elicited by nociceptin into the mNTS were blocked by prior microinjections of the specific ORL1-receptor antagonist [N-Phe1]-nociceptin-(1–13)-NH2 (9 mmol/l). Microinjections of the ORL1-receptor antagonist alone did not elicit a response. Prior combined microinjections of GABAA and GABAB receptor antagonists (2 mmol/l gabazine and 100 mmol/l 2-hydroxysaclofen, respectively) into the mNTS blocked the responses to microinjections of nociceptin at the same site. Prior microinjections of ionotropic glutamate receptor antagonists (2 mmol/l NBQX and 5 mmol/l d-AP7) also blocked responses to nociceptin microinjections into the mNTS. These results were confirmed by direct neuronal recordings. It was concluded that 1) nociceptin inhibits GABAergic neurons in the mNTS, 2) GABAergic neurons may normally inhibit the release of glutamate from the terminals of peripheral afferents in the mNTS, and 3) inhibition of GABAergic neurons by nociceptin results in an increase in the release of glutamate in the mNTS, which in turn elicits depressor and bradycardic responses via activation of ionotropic glutamate receptors on secondary mNTS neurons.


1980 ◽  
Vol 59 (s6) ◽  
pp. 235s-237s ◽  
Author(s):  
R. W. Rockhold ◽  
J. T. Crofton ◽  
L. Share

1. The cardiovascular effects of an enkephalin analogue were examined in spontaneously hypertensive and normotensive Wistar-Kyoto rats. (D-Ala2)-methionine enkephalin caused a biphasic increase in blood pressure and an increase in heart rate after intracerebroventricular injection. 2. The initial pressor response to (D-Ala2)-methionine enkephalin was greater in hypertensive than in normotensive rats. No difference was noted between groups during the secondary pressor response. Heart rate increases paralleled the secondary increase in blood pressure. 3. Naloxone pretreatment abolished the secondary increase in blood pressure and the tachycardia, but did not blunt the initial pressor response in female Wistar-Kyoto rats. 4. Plasma levels of arginine vasopressin were depressed during the plateau phase of the pressor response in hypertensive rats given intracerebroventricular (d-Ala2)-methionine enkephalin. 5. The results suggest that the cardiovascular effects of central enkephalin are not due to vasopressin, but may involve activation of the sympathetic nervous system.


2018 ◽  
Vol 596 (8) ◽  
pp. 1373-1384 ◽  
Author(s):  
Thomas J. Hureau ◽  
Joshua C. Weavil ◽  
Taylor S. Thurston ◽  
Ryan M. Broxterman ◽  
Ashley D. Nelson ◽  
...  

2001 ◽  
Vol 281 (5) ◽  
pp. H2218-H2225 ◽  
Author(s):  
Jennifer R. Ballew ◽  
Gregory D. Fink

We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg · kg−1 · day−1intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.


2002 ◽  
Vol 283 (2) ◽  
pp. R451-R459 ◽  
Author(s):  
Ling Xu ◽  
Alan F. Sved

Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng · kg−1 · min−1 iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.


Sign in / Sign up

Export Citation Format

Share Document