Role of pressor mechanisms from the NTS and CVLM in control of arterial pressure

2005 ◽  
Vol 289 (5) ◽  
pp. R1416-R1425 ◽  
Author(s):  
Thiago Santos Moreira ◽  
Monica Akemi Sato ◽  
Ana Carolina Thomaz Takakura ◽  
José Vanderlei Menani ◽  
Eduardo Colombari

In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABAA agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 ± 11 and to 142 ± 6 mmHg, respectively, vs. control: 105 ± 4 mmHg; HR to 407 ± 15 and to 412 ± 18 beats per minute (bpm), respectively, vs. control: 352 ± 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 ± 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 ± 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.

2007 ◽  
Vol 22 (4) ◽  
pp. 291-298 ◽  
Author(s):  
Marco Aurelio Marangoni ◽  
Alex Hausch ◽  
Pedro Thadeu Galvão Vianna ◽  
José Reinaldo Cerqueira Braz ◽  
Rosa Marlene Viero ◽  
...  

PURPOSE: About 50 % of indications for dialysis in acute renal failure are related to problems originated during the perioperative period. Intraoperative hemodynamic changes lead to renal vasoconstriction and hypoperfusion. Previous studies have not defined the dexmedetomidine renal role in hemorrhage situations. This study evaluated the effect of dexmedetomidine on renal function and histology after acute hemorrhage in rats. METHODS: Covered study with 20 Wistars rats, anesthetized with sodium pentobarbital, 50 mg. kg-1, intraperitoneal, randomized into 2 groups submitted to 30% volemia bleeding: DG - iv dexmedetomidine, 3 µg. kg-1 (10 min) and continuous infusion - 3 µg. kg-1. h-1; CG - pentobarbital. For renal clearance estimative, sodium p-aminohippurate and iothalamate were administered. Studied attributes: heart rate, mean arterial pressure, rectal temperature, hematocrit, iothalamate and p-aminohippurate clearance, filtration fraction, renal blood flow, renal vascular resistance, and histological evaluations of the kidneys. RESULTS: DG showed smaller values of heart rate, mean arterial pressure, and renal vascular resistance, but iothalamate clearance and filtration fraction values were higher. There was similarity in p-aminohippurate clearance and renal blood flow. Both groups had histological changes ischemia-like, but dexmedetomidine determined higher tubular dilatation scores. CONCLUSION: In rats, after acute hemorrhage, dexmedetomidine determined better renal function, but higher tubular dilation scores.


2021 ◽  
Vol 75 ◽  
pp. 18-23
Author(s):  
Karolina Jasikowska ◽  
Magdalena Zając ◽  
Jerzy Jochem

WstępCholecystokinina (CCK) należy do hormonów peptydowych układu pokarmowego regulujących trawienie lipidów i białek, a ponadto jest ośrodkowym neurotransmiterem/neuromodulatorem. Po podaniu dożylnym wywołuje efekt resuscytacyjny u szczurów we wstrząsie krwotocznym. Ze względu na fakt, iż CCK może wpływać bezpośrednio i pośrednio na czynność ośrodka sercowo-naczyniowego, celem pracy było zbadanie działania pochodnej siarczanowej oktapeptydu CCK (CCK-8) podawanej do komory bocznej mózgu (<i>intracerebroventricularly</i> – icv) w fazie hamowania czynności układu współczulnego we wstrząsie krwotocznym.Materiał i metodyBadania przeprowadzono u samców szczurów szczepu Wistar w znieczuleniu ogólnym (ketamina [100 mg/kg]/ksylazyna [10 mg/kg]), u których wywołano nieodwracalny wstrząs krwotoczny (0% przeżycia 2 h) ze średnim ciśnieniem tętniczym (<i>mean arterial pressure</i> – MAP) 20–25 mmHg. W 5 min krytycznej hipotensji szczurom podawano icv CCK-8 (5, 15 nmol) lub 0,9% roztwór NaCl (5 μl).WynikiKrwotok prowadził do obniżenia ciśnienia tętna (<i>pulse pressu</i>re – PP), częstości rytmu serca (<i>heart rate</i> – HR) oraz wzrostu nerkowego (<i>renal vascular resistance</i> – RVR) i krezkowego oporu naczyniowego (<i>mesenteric vascular resistance</i> – MVR). W grupie kontrolnej nie stwierdzono wzrostu badanych parametrów układu krążenia, a średni czas przeżycia wynosił 32,5 ± 5,1 min. CCK-8 wywoływała zależne od dawki spadki MAP, PP i HR ze wzrostem RVR i MVR, a także skracała czas przeżycia w porównaniu ze zwierzętami kontrolnymi.WnioskiOśrodkowo działająca CCK-8 wywołuje działanie depresyjne na układ krążenia u szczurów we wstrząsie krwotocznym.


1998 ◽  
Vol 94 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sharmini Puvi-Rajasingham ◽  
Gareth D. P. Smith ◽  
Adeola Akinola ◽  
Christopher J. Mathias

1. In human sympathetic denervation due to primary autonomic failure, food and exercise in combination may produce a cumulative blood pressure lowering effect due to simultaneous splanchnic and skeletal muscle dilatation unopposed by corrective cardiovascular reflexes. We studied 12 patients with autonomic failure during and after 9 min of supine exercise, when fasted and after a liquid meal. Standing blood pressure was also measured before and after exercise. 2. When fasted, blood pressure fell during exercise from 162 ± 7/92 ± 4 to 129 ± 9/70 ± 5 mmHg (mean arterial pressure by 22 ± 5%), P < 0.0005. After the meal, blood pressure fell from 159 ± 8/88 ± 6 to 129 ± 6/70 ± 4 mmHg (mean arterial pressure by 22 ± 3%), P < 0.0001, and further during exercise to 123 ± 6/61 ± 3 mmHg (mean arterial pressure by 9 ± 3%), P < 0.01. The stroke distance—heart rate product, an index of cardiac output, did not change after the meal. During exercise, changes in the stroke distance—heart rate product were greater when fasted. 3. Resting forearm and calf vascular resistance were higher when fasted. Calf vascular resistance fell further after exercise when fasted. Resting superior mesenteric artery vascular resistance was lower when fed; 0.19 ± 0.02 compared with 032 ± 0.06, P < 0.05. After exercise, superior mesenteric artery vascular resistance had risen by 82%, to 0.53 ± 0.12, P < 0.05 (fasted) and by 47%, to 0.29 ± 0.05, P < 0.05 (fed). 4. On standing, absolute levels of blood pressure were higher when fasted [83 ± 7/52 ± 7 compared with 71 ± 2/41 ± 3 (fed), each P < 0.05]. Subjects were more symptomatic on standing post-exercise when fed. 5. In human sympathetic denervation, exercise in the fed state lowered blood pressure further than when fasted and worsened symptoms of postural hypotension.


2018 ◽  
Vol 596 (8) ◽  
pp. 1373-1384 ◽  
Author(s):  
Thomas J. Hureau ◽  
Joshua C. Weavil ◽  
Taylor S. Thurston ◽  
Ryan M. Broxterman ◽  
Ashley D. Nelson ◽  
...  

1990 ◽  
Vol 259 (5) ◽  
pp. R955-R962
Author(s):  
B. H. Machado ◽  
M. J. Brody

We showed previously that activation of nucleus ambiguus (NA) induced bradycardia and increased arterial pressure. In this study, we compared responses produced by electrical and chemical (glutamate) stimulation of NA and adjacent rostral ventrolateral medulla (RVLM). Equivalent pressor responses were elicited from both areas. However: 1) The response from RVLM was elicited at a lower frequency. 2) Regional vascular resistance changes were different, i.e., electrical stimulation of NA increased vascular resistance in hindquarters much more than the renal and mesenteric beds. In contrast, electrical and chemical stimulation of RVLM produced a more prominent effect on the renal vascular bed. 3) Bradycardia was elicited from NA at lower current intensity. 4) Glutamate produced bradycardia only when injected into NA. Studies in rats with sinoaortic deafferentation showed that bradycardic response to activation of NA was only partly reflex in origin. We conclude that 1) NA and RVLM control sympathetic outflow to regional vascular beds differentially and 2) the NA region involves parasympathetic control of heart rate and sympathetic control of arterial pressure.


1983 ◽  
Vol 244 (1) ◽  
pp. R74-R77 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.


2008 ◽  
Vol 108 (5) ◽  
pp. 802-811 ◽  
Author(s):  
Robert A. Dyer ◽  
Jenna L. Piercy ◽  
Anthony R. Reed ◽  
Carl J. Lombard ◽  
Leann K. Schoeman ◽  
...  

Background Hemodynamic responses to spinal anesthesia (SA) for cesarean delivery in patients with severe preeclampsia are poorly understood. This study used a beat-by-beat monitor of cardiac output (CO) to characterize the response to SA. The hypothesis was that CO would decrease from baseline values by less than 20%. Methods Fifteen patients with severe preeclampsia consented to an observational study. The monitor employed used pulse wave form analysis to estimate nominal stroke volume. Calibration was by lithium dilution. CO and systemic vascular resistance were derived from the measured stroke volume, heart rate, and mean arterial pressure. In addition, the hemodynamic effects of phenylephrine, the response to delivery and oxytocin, and hemodynamics during recovery from SA were recorded. Hemodynamic values were averaged for defined time intervals before, during, and after SA. Results Cardiac output remained stable from induction of SA until the time of request for analgesia. Mean arterial pressure and systemic vascular resistance decreased significantly from the time of adoption of the supine position until the end of surgery. After oxytocin administration, systemic vascular resistance decreased and heart rate and CO increased. Phenylephrine, 50 mug, increased mean arterial pressure to above target values and did not significantly change CO. At the time of recovery from SA, there were no clinically relevant changes from baseline hemodynamic values. Conclusions Spinal anesthesia in severe preeclampsia was associated with clinically insignificant changes in CO. Phenylephrine restored mean arterial pressure but did not increase maternal CO. Oxytocin caused transient marked hypotension, tachycardia, and increases in CO.


2018 ◽  
Vol 315 (2) ◽  
pp. F241-F246
Author(s):  
Sofia Jönsson ◽  
Jacqueline M. Melville ◽  
Mediha Becirovic-Agic ◽  
Michael Hultström

Renin-angiotensin-system blockers are thought to increase the risk of acute kidney injury after surgery and hemorrhage. We found that losartan does not cause renal cortical hypoxia after hemorrhage in rats because of decreased renal vascular resistance, but we did not evaluate resuscitation. We aimed to study losartan’s effect on renal cortical and medullary oxygenation, as well as norepinephrine’s vasopressor effect in a model of resuscitated hemorrhage. After 7 days of losartan (60 mg·kg−1·day−1) or control treatment, male Wistar rats were hemorrhaged 20% of their blood volume and resuscitated with Ringerʼs acetate. Mean arterial pressure, renal blood flow, and kidney tissue oxygenation were measured at baseline and after resuscitation. Finally, the effect of norepinephrine on mean arterial pressure and renal blood flow was investigated. As expected, losartan lowered mean arterial pressure but not renal blood flow. Losartan did not affect renal oxygen consumption and oxygen tension. Mean arterial pressure and renal blood flow were lower after resuscitated hemorrhage. A smaller increase of renal vascular resistance in the losartan group translated to a smaller decrease in cortical oxygen tension, but no significant difference was seen in medullary oxygen tension, either between groups or after hemorrhage. The effect of norepinephrine on mean arterial pressure and renal blood flow was similar in control- and losartan-treated rats. Losartan does not decrease renal oxygenation after resuscitated hemorrhage because of a smaller increase in renal vascular resistance. Further, losartan does not decrease the efficiency of norepinephrine as a vasopressor, indicating that blood pressure may be managed effectively during losartan treatment.


1996 ◽  
Vol 271 (3) ◽  
pp. H1015-H1021 ◽  
Author(s):  
T. Saigusa ◽  
M. Iriki ◽  
J. Arita

The role of endogenous angiotensin II (ANG II) at the level of the rostral (RVLM) and caudal ventrolateral medulla (CVLM) in the control of sympathetic baroreflex function was investigated in urethan-anesthetized rabbits. The baroreflex relationship between mean arterial pressure and integrated renal sympathetic nerve activity (RSNA) was compared before and during microinfusion of saralasin, an ANG II receptor antagonist into RVLM or CVLM. The infusion of saralasin (20 pmol/min) into RVLM reduced the upper plateau, the range, and the range-dependent gain of the baroreflex, as well as the resting level of RSNA. The infusion of saralasin into CVLM augmented the upper plateau, the reflex range, and the range-dependent gain, whereas it did not alter the resting level of RSNA or mean arterial pressure. These results suggest that 1) the ANG II networks in RVLM are tonically active, influencing the resting level of the sympathetic outflow and facilitating the sympathetic baroreflex function, and 2) the ANG II networks in CVLM do not significantly influence the sympathetic activity in the resting state but exert an inhibitory effect on the baroreflex response when arterial pressure falls below the resting level.


1993 ◽  
Vol 264 (1) ◽  
pp. R222-R226 ◽  
Author(s):  
D. M. Pollock ◽  
T. J. Opgenorth

Experiments were designed to examine the role of endothelin (ET) receptors, specifically ETA receptors, in mediating the renal vasoconstrictor effects of ET-1 in anesthetized Sprague-Dawley rats. Intravenous infusion of ET-1 at 25 pmol.kg-1 x min-1 for 60 min produced a significant increase in mean arterial pressure (20 +/- 7%) and decreases in renal plasma flow (-60 +/- 6%) and glomerular filtration rate (-47 +/- 6%). Renal vascular resistance was significantly increased from 17 +/- 1 mmHg.ml-1 x min.g kidney wt during control period to 54 +/- 11 mmHg.ml-1 x min.g kidney wt during the experimental period. A second group of rats was infused with both ET-1 and the specific ETA receptor antagonist BQ-123 (0.1 mg.kg-1 x min-1). ET-1-induced increases in mean arterial pressure were completely blocked by BQ-123 (the average change was -7 +/- 4%). However, the renal vasoconstrictor effects of ET-1 were not affected by the antagonist, since renal plasma flow and glomerular filtration rate were again significantly reduced (-54 +/- 4 and -56 +/- 6%, respectively). Once again, renal vascular resistance was significantly increased from 16 +/- 2 mmHg.ml-1 x min.g kidney wt during the control period to 33 +/- 5 mmHg.ml-1 x min.g kidney wt during the experimental period. In a third group, infusion of BQ-123 alone produced a significant decline in mean arterial pressure (-13 +/- 2%), with no significant changes in renal plasma flow or glomerular filtration rate, thus producing a significant decrease in renal vascular resistance (15 +/- 1 vs. 11 +/- 2 mmHg.ml-1 x min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document