Stimulation of metabotropic glutamate receptors in the dorsomedial hypothalamus elevates heart rate in rats

1996 ◽  
Vol 270 (5) ◽  
pp. R1115-R1121 ◽  
Author(s):  
J. DiMicco ◽  
A. J. Monroe

This study examined the potential role of metabotropic glutamate receptors (mGluRs) in the dorsomedial hypothalamus (DMH) by assessing the cardiovascular effects of microinjecting the agonist trans-1-aminocyclopentane-1, 3- dicarboxylate (tACPD) into this region in urethan-anesthetized rats. Dose-related tachycardia was observed after unilateral microinjection of 1S 3R-tACPD (10-200 pmol/50nl) but not after injection of 1R, 3S-tACPD, which has been reported to have little or no activity at mGluRs. Microinjection of dihydroxyphenylglycine, an agonist at mGluRs linked to phosphoinositide hydrolysis, resulted in increases in heart rate that correlated closely in magnitude to those seen after injection of the same dose of 1S, 3R-tACPD. Coinjection of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2- amino-5-phosphonopentanoic acid, given at doses shown to elicit selective blockade of NMDA ionotropic glutamate receptors, reduced the increase in heart rate evoked by 100 pmol 1S, 3R-tACPD alone. Thus the DMH contains functional mGluRs, and stimulation of these receptors activates the same sympathoexcitatory mechanism characterized previously to provoke dose-related tachycardia.

2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Waldemar Kryszkowski ◽  
Tomasz Boczek

Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.


2003 ◽  
Vol 138 (8) ◽  
pp. 1417-1424 ◽  
Author(s):  
Hui-Fang Li ◽  
Meng-Ya Wang ◽  
Jessica Knape ◽  
Joan J Kendig

1993 ◽  
Vol 69 (3) ◽  
pp. 1000-1004 ◽  
Author(s):  
Y. B. Liu ◽  
J. F. Disterhoft ◽  
N. T. Slater

1. The long-term enhancement of synaptic excitability in CA1 hippocampal pyramidal neurons produced by activation of metabotropic glutamate receptors (mGluRs) was studied in rabbit hippocampal slices in vitro. 2. Bath application of the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3- dicarboxylic acid (1S,3R-ACPD) (5-20 microM) for 20 min produced a reversible depolarization of membrane potentiatil, blockade of spike accommodation, and increase in input resistance of CA1 neurons. However, a long-lasting increase in synaptic excitability was observed: single stimuli applied to the Schaffer collateral commisural fiber pathway evoked epileptiform discharges in the presence of 1S,3R-ACPD and after the washout of 1S,3R-ACPD, persistent paroxysmal depolarization shifts (PDSs) were evoked by afferent stimulation. A long-lasting enhancement of synaptic excitability was also observed in the presence of the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5), which blocked the stimulation-evoked PDS and associated afterdischarges. 3. When biphasic, monosynaptically evoked inhibitory post-synaptic potentials (IPSPs) were recorded in the presence of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10–15 microM) and D-AP5 (20 microM), the bath application of 1S,3R-ACPD produced a significant reduction (approximately 50%) of both components of the IPSP, which persisted after the washout of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 34 ◽  
Author(s):  
CHARLES L. COX ◽  
JOSEPH A. BEATTY

AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.


Sign in / Sign up

Export Citation Format

Share Document