Effects of homologous atrial natriuretic peptide on drinking and plasma ANG II level in eels

1998 ◽  
Vol 275 (5) ◽  
pp. R1605-R1610 ◽  
Author(s):  
Takamasa Tsuchida ◽  
Yoshio Takei

The effects of eel atrial natriuretic peptide (ANP) on drinking were investigated in eels adapted to freshwater (FW) or seawater (SW) or in FW eels whose drinking was stimulated by a 2-ml hemorrhage. An intra-arterial infusion of ANP (0.3–3.0 pmol ⋅ kg−1 ⋅ min−1), which increased plasma ANP level 1.5- to 20-fold, inhibited drinking dose dependently in all groups of eels. The drinking rate recovered to the level before ANP infusion within 2 h after infusate was replaced by saline. The inhibition at 3.0 pmol ⋅ kg−1 ⋅ min−1was profound in FW eels and hemorrhaged FW eels, whereas significant drinking still remained after inhibition in SW eels. Plasma ANG II concentration also decreased dose dependently during ANP infusion and recovered to the initial level after saline infusion in all groups of eels. The decrease at 3.0 pmol ⋅ kg−1 ⋅ min−1was large in FW eels and hemorrhaged FW eels compared with that of SW eels. Thus the changes in drinking rate and plasma ANG II level were parallel during ANP infusion. Plasma sodium concentration and osmolality decreased during ANP infusion in SW and FW eels, and they were restored after saline infusion. In hemorrhaged FW eels, however, ANP infusion did not alter plasma sodium concentration and osmolality. Hematocrit did not change during ANP infusion in any group of eels. Collectively, ANP infusion at physiological doses decreased drinking rate and plasma ANG II concentration in parallel in both FW and SW eels. It remains undetermined whether the inhibition of drinking is caused by direct action of ANP or through inhibition of ANG II, which is known as a potent dipsogen in all vertebrate species, including eels.

2002 ◽  
Vol 282 (6) ◽  
pp. R1754-R1761 ◽  
Author(s):  
Lars Juel Andersen ◽  
Jens Lundbæk Andersen ◽  
Bettina Pump ◽  
Peter Bie

The hypothesis that increases in plasma sodium induce natriuresis independently of changes in body fluid volume was tested in six slightly dehydrated seated subjects on controlled sodium intake (150 mmol/day). NaCl (3.85 mmol/kg) was infused intravenously over 90 min as isotonic (Iso) or as hypertonic saline (Hyper, 855 mmol/l). After Hyper, plasma sodium increased by 3% (142.0 ± 0.6 to 146.2 ± 0.5 mmol/l). During Iso a small decrease occurred (142.3 ± 0.6 to 140.3 ± 0.7 mmol/l). Iso increased estimates of plasma volume significantly more than Hyper. However, renal sodium excretion increased significantly more with Hyper (291 ± 25 vs. 199 ± 24 μmol/min). This excess was not mediated by arterial pressure, which actually decreased slightly. Creatinine clearance did not change measurably. Plasma renin activity, ANG II, and aldosterone decreased very similarly in Iso and Hyper. Plasma atrial natriuretic peptide remained unchanged, whereas plasma vasopressin increased with Hyper (1.4 ± 0.4 to 3.1 ± 0.5 pg/ml) and decreased (1.3 ± 0.4 to 0.6 ± 0.1 pg/ml) after Iso. In conclusion, the natriuretic response to Hyper was 50% larger than to Iso, indicating that renal sodium excretion may be determined partly by plasma sodium concentration. The mechanism is uncertain but appears independent of changes in blood pressure, glomerular filtration rate, the renin system, and atrial natriuretic peptide.


1991 ◽  
Vol 261 (2) ◽  
pp. E252-E256 ◽  
Author(s):  
B. A. Clark ◽  
D. Elahi ◽  
L. Fish ◽  
M. McAloon-Dyke ◽  
K. Davis ◽  
...  

Atrial natriuretic peptide (ANP) may suppress vasopressin release, but the dynamics of this interaction as well as the influence of age have not been defined. We studied six or seven young (19-40 yr old) and seven elderly volunteers (65-83 yr old) under two circumstances: 1) after infusion of 5% saline (0.04 ml.kg-1.min-1) for 2 h and 2) after the same infusion given with simultaneous synthetic human ANP (0.05 micrograms.kg-1.min-1). Hypertonic saline alone produced a progressive rise in plasma vasopressin with increasing serum sodium. During hypertonic saline alone, vasopressin levels began to rise at an increment in serum sodium of 1.67 +/- 0.35 mM in the young and 1.43 +/- 0.32 mM in the elderly and rose linearly with increasing serum sodium. When ANP was infused with hypertonic saline (with peak ANP levels of approximately 1,000 pM), vasopressin levels began to rise at an increment in serum sodium of 4.43 +/- 0.67 mM in the young and 4.57 +/- 0.43 mM in the elderly (P less than 0.01 vs. saline alone). Furthermore, the vasopressin response for any given serum sodium was significantly reduced in both young and elderly subjects, resulting in a rightward displacement of the curve relating vasopressin response to sodium concentration (P less than 0.001). In conclusion, ANP not only suppresses vasopressin but raises the threshold for release of vasopressin in response to osmotic stimulation in both young and elderly individuals. High circulating ANP levels may be responsible in part for the suppression of vasopressin levels and water diuresis seen during states of volume expansion.


1988 ◽  
Vol 74 (4) ◽  
pp. 419-425 ◽  
Author(s):  
J. McMurray ◽  
A. D. Struthers

1. Atrial natriuretic peptide (ANP) has previously been shown to inhibit the renin–angiotensin–aldosterone system (RAAS) at several different levels. We have now investigated a further non-endocrine, renal interaction between ANP and the RAAS. 2. The effects of ANP and angiotensin II (ANG II) alone, and in combination, on urinary electrolyte and water excretion were studied in eight normal male subjects undergoing maximal water diuresis. 3. ANP caused a significant increase in urine flow and sodium excretion. ANG II alone was antidiuretic, antinatriuretic and antikaliuretic. When ANP was given against a background infusion of ANG II, urinary flow rate and electrolyte excretion increased from a new lower level to reach a value intermediate between that found with ANG II alone and ANP alone. 4. It is concluded that the renal effects of ANP are modified in the presence of simultaneously elevated levels of ANG II and that net water and electrolyte excretion reflect the sum of the opposing influences of each peptide. While this interplay may be non-specific, it is possible that ANP may exert some of its actions by specifically inhibiting the intrarenal effects of ANG II.


1986 ◽  
Vol 70 (s13) ◽  
pp. 74P-74P ◽  
Author(s):  
JV Anderson ◽  
J Donckier ◽  
W McKenna ◽  
ACR Burns ◽  
SR Bloom

1995 ◽  
Vol 269 (2) ◽  
pp. R245-R251 ◽  
Author(s):  
R. E. Blackburn ◽  
W. K. Samson ◽  
R. J. Fulton ◽  
E. M. Stricker ◽  
J. G. Verbalis

These studies evaluated the involvement of central oxytocin (OT) and atrial natriuretic peptide (ANP) receptors in the osmotic inhibition of hypovolemia-induced salt appetite. Rats were pretreated centrally with the A chain of the cytotoxin ricin conjugated to OT (rAOT) or ANP (rAANP) to selectively inactivate cells bearing these respective receptors, or rats were pretreated with the unconjugated A chain (rA) as a control. Hypovolemia was induced with subcutaneous colloid injections, and rats then were given either 2 M mannitol, which raises plasma osmolality but lowers plasma sodium, or 1 M NaCl, which raises both. Hypertonic mannitol inhibited saline ingestion in rA-treated control rats but stimulated ingestion in rAOT- and rAANP-treated rats, whereas hypertonic NaCl blunted saline ingestion in rA- and rAOT-treated rats but stimulated ingestion in rAANP-treated rats. Angiotensin II-induced saline intake was similarly potentiated in rAOT- and rAANP-treated rats, indicating that this treatment also activates central inhibitory OT and ANP pathways. These data suggest that central ANP receptors mediate both Na(+)- and osmolality-induced inhibition of NaCl ingestion, whereas central OT receptors primarily mediate osmolality-induced inhibition of NaCl ingestion in rats.


1979 ◽  
Vol 236 (2) ◽  
pp. H314-H322 ◽  
Author(s):  
R. D. Manning ◽  
A. C. Guyton ◽  
T. G. Coleman ◽  
R. E. McCaa

Experimental hypertension was produced in 7 dogs by continuously infusing suppressor amounts of antidiuretic hormone (ADH) and hypotonic saline after renal mass had been surgically reduced to 30% of normal. Data were collected during 9 days of control measurements, 14 days of ADH and saline infusion, and then 3 days of saline infusion to 1) determine the chronic effects of ADH on arterial pressure and 2) determine whether hypertension could be maintained during hyponatremia. During the period of ADH infusion, arterial pressure increased to hypertensive levels while plasma sodium concentration decreased almost 20 meq/1. Also, during the ADH infusion period, the dogs demonstrated decreases in heart rate, plasm potassium concentration, plasma renin activity, and plasma aldosterone concentration. Fluid volume expansion was evidenced by sustained increases in blood volume and sodium space. We conclude that when renal function is compromised, subpressor amounts of ADH can contribute to the development of hypertension, probably due to its fluid-retaining properties and in spite of the attendant hyponatremia.


1993 ◽  
Vol 71 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Louis Legault ◽  
Leonard C. Warner ◽  
Wai Ming Leung ◽  
Alexander G. Logan ◽  
Laurence M. Blendis ◽  
...  

The nature of sodium retention in cirrhosis complicated by ascites has been studied for the last 30 years. Resistance to the natriuretic action of atrial natriuretic peptide (ANP) may play a potential role in this sodium retention. To further evaluate this possibility, we studied 12 patients with biopsy-proven cirrhosis and ascites on 2 consecutive days after a 7-day period off diuretics while receiving a 20 mmol/day sodium restricted diet. Following a crossover design, patients underwent head-out water immersion (HWI) for 3 h and were infused with a α-human ANP for 2 h on 2 consecutive days. Blood and urine samples were collected hourly. Five patients displayed a natriuretic response to HWI, sufficient to achieve negative sodium balance, and these patients were termed responders. Each of these five patients also displayed a natriuretic response to ANP infusion. In contrast, the other seven patients (nonresponders) consistently failed to develop a natriuretic response to either maneuver. The two groups had similar elevations in plasma ANP concentrations, but at baseline differed in terms of plasma sodium, plasma renin activity, and serum aldosterone. Despite higher serum aldosterone concentrations, nonresponders excreted less potassium than responders during the peak effect of the interventions, suggesting greater sodium delivery to the aldosterone-sensitive nephron segment in responders. We conclude that the inability to mount an adequate sodium excretory response to HWI in patients with cirrhosis may be conveyed through increased antinatriuretic factors that decrease the sodium delivery to the medullary collecting duct and inhibit the natriuretic effect of ANP at that site.Key words: atrial natriuretic peptide, cirrhosis, ascites, sodium.


1992 ◽  
Vol 12 (2) ◽  
pp. 318-325 ◽  
Author(s):  
Kinya Tamaki ◽  
Yoshisuke Saku ◽  
Jun Ogata

The purpose of the present study was to determine effects of angiotensin (ANG) II on the cerebral circulation. We measured the pial artery pressure (PAP) and CBF in anesthetized rabbits. ANG II (5 μg/min) was infused into each carotid artery, and systemic arterial pressure was maintained constant. During infusion of ANG II, there was a significant increase in CBF and fall of PAP, with no change in the large artery resistance (LAR) and a significant decrease in the small vessel resistance (SVR). To investigate whether prostaglandin modulated the ANG II-induced increase in CBF, indomethacin was administered (10 mg/kg i.v.) in another group of animals. Indomethacin itself reduced PAP and increased LAR significantly without changing CBF or SVR. Indomethacin did not attenuate the effects of ANG II on the cerebral circulation. The CMRO2 was assessed during ANG II intracarotid infusion in another group of rabbits. CMRO2 did not change during infusion of ANG II. We also investigated effects of α-atrial natriuretic peptide (ANP) on the cerebral circulation. Infusion of ANP (1 μg/min) decreased LAR by 28% (p < 0.05) without altering SVR. Administration of ANG II after ANP tended to reduce LAR (p > 0.05), with a significant decrease in SVR. The results of the present study suggest that high doses of ANG II can produce cerebral vasodilatation, particularly of small vessels. Blood-borne ANP dilated the large arteries of the cerebral circulation selectively and neither interfered with nor reversed the ANG II-induced increase in CBF.


1989 ◽  
Vol 257 (5) ◽  
pp. R1169-R1174 ◽  
Author(s):  
H. L. Mizelle ◽  
J. E. Hall ◽  
D. A. Hildebrandt

The aim of this study was to quantitate the effects of increases in atrial natriuretic peptide (ANP), within the pathophysiological range, on the acute pressure natriuresis mechanism and the role of the renin-angiotensin system (RAS) in modulating these effects. Renal hemodynamics and electrolyte excretion were measured in anesthetized dogs while renal perfusion pressure (RPP) was controlled at three levels (120-122, 100, and 75 mmHg) with and without intrarenal infusion of ANP at 5 ng.kg-1.min-1. Sodium excretion was significantly higher during ANP infusion at RPP of 122 +/- 3 mmHg, averaging 55.8 +/- 13.7 during control and 113.3 +/- 23.3 mueq/min during ANP infusion. AT RPP of 101 +/- 1 mmHg, sodium excretion was 51.8 +/- 17.4 during control and 93.0 +/- 17.6 mueq/min during ANP infusion, but at RPP of 75 +/- 0 mmHg there was no difference in sodium excretion between control and ANP infusion. In a second set of dogs, angiotensin II (ANG II) formation was blocked with captopril (20 micrograms.kg-1.min-1), circulating (5 ng.kg-1.min-1), and the above protocol was repeated. When the RAS was fixed, the renal responses to ANP infusion were abolished, even at the higher pressure levels. These data indicate that ANP increases the slope of pressure natriuresis; at higher levels of RPP, ANP potentiates pressure natriuresis but not at lower pressures. In addition, part of this effect may be due to suppression of the RAS, because the ANP-induced shift in the pressure natriuresis relationship was abolished when circulating ANG II was maintained constant.


Sign in / Sign up

Export Citation Format

Share Document