scholarly journals Electrogenic Na+-dependentl-alanine transport in the lizard duodenum. Involvement of systems A and ASC

2001 ◽  
Vol 280 (3) ◽  
pp. R612-R622
Author(s):  
Virtudes Medina ◽  
Antonio Lorenzo ◽  
Mario Dı́az

l-Alanine transport across the isolated duodenal mucosa of the lizard Gallotia galloti has been studied in Ussing chambers under short-circuit conditions. Net l-alanine fluxes, transepithelial potential difference (PD), and short-circuit current ( Isc) showed concentration-dependent relationships. Na+-dependent l-alanine transport was substantially inhibited by the analog α-methyl aminoisobutyric acid (MeAIB). Likewise, MeAIB fluxes were completely inhibited byl-alanine, indicating the presence of system A for neutral amino acid transport. System A transport activity was electrogenic and exhibited hyperbolic relationships for net MeAIB fluxes, PD, and Isc, which displayed similar apparent K m values. Na+-dependentl-alanine transport, but not MeAIB transport, was partially inhibited by l-serine and l-cysteine, indicating the participation of system ASC. This transport activity represents the major pathway for l-alanine absorption and seemed to operate in an electroneutral mode with a negligible contribution to the l-alanine-induced electrogenicity. It is concluded from the present study that the active Na+-dependent l-alanine transport across the isolated duodenal mucosa of Gallotia galloti results from the independent activity of systems A and ASC for neutral amino acid transport.

1988 ◽  
Vol 255 (3) ◽  
pp. 963-969 ◽  
Author(s):  
A R Quesada ◽  
J D McGivan

A rapid method for the functional reconstruction of amino acid transport from liver plasma-membrane vesicles using the neutral detergent decanoyl-N-glucamide (‘MEGA-10’) is described. The method is a modification of that previously employed in this laboratory for reconstitution of amino acid transport systems from kidney brush-border membranes [Lynch & McGivan (1987) Biochem. J. 244, 503-508]. The transport activities termed ‘System A’, ‘System N’, and ‘System L’ are all reconstituted. The reconstitution procedure is rapid and efficient and is suitable as an assay for transport activity in studies involving membrane fractionation. By using this reconstitution procedure, System A transport activity was partially purified by lectin-affinity chromatography.


2001 ◽  
Vol 18 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Ovidio Bussolati ◽  
Valeria Dall'Asta ◽  
Renata Franchi-Gazzola ◽  
Roberto Sala ◽  
Bianca Maria Rotoli ◽  
...  

2002 ◽  
Vol 187 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Chandra R. Jones ◽  
Sonne R. Srinivas ◽  
Lawrence D. Devoe ◽  
Vadivel Ganapathy ◽  
Puttur D. Prasad

Placenta ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 361-367 ◽  
Author(s):  
F. von Versen-Höynck ◽  
A. Rajakumar ◽  
M.S. Parrott ◽  
R.W. Powers

1996 ◽  
Vol 10 (8) ◽  
pp. 920-926 ◽  
Author(s):  
Ovidio Bussolati ◽  
Jacopo Uggeri ◽  
Silvana Belletti ◽  
Valeria Dall'Asta ◽  
Gian C. Gazzola

1999 ◽  
Vol 343 (1) ◽  
pp. 169-176 ◽  
Author(s):  
George J. PETER ◽  
Anthony DAVIES ◽  
Peter W. WATT ◽  
Jacqueline BIRRELL ◽  
Peter M. TAYLOR

The neutral and basic amino acid transport protein (NBAT) expressed in renal and jejunal brush-border membranes is involved in amino acid and cystine absorption. NBAT mutations result in Type 1 cystinuria. A C-terminal myc-tagged NBAT (NBATmyc) retains the amino acid transport and protein-protein interaction properties of NBAT when expressed in Xenopusoocytes. Neutral amino acid (Ala, Phe)-cationic amino acid (Arg) heteroexchanges related to NBATmyc expression in oocytes are inactivated by treatment with the thiol-group reagent N-ethylmaleimide (NEM), although significant Arg-Arg and Ala-Ala homoexchanges persist. Inactivation of heteroexchange activity by NEM is accompanied by loss of > 85% of alanine and cystine uptake, with smaller (< 50%) inhibition of arginine and phenylalanine uptake. NEM-sensitive cystine uptake and arginine-alanine heteroexchange (system b0,+ activity) are not expressed by an NBAT truncation mutant (NBATmyc-Sph1) lacking the 13 C-terminal amino acid residues, but the mutant expresses NEM-resistant transport activity (system y+L-like) equivalent to that of full-length NBATmyc. The deleted region of NBATmyc-Sph1 contains two cysteine residues (671/683) which may be the targets of NEM action. The synthetic amino acid 2-trifluoromethylhistidine (TFMH) stimulated alanine efflux at pH 7.5 and arginine at pH 5.5, but not vice versa, establishing the existence of distinct pathways for cationic and neutral amino acid homoexchange (TFMH is zwitterionic at pH 7.5 and cationic at pH 5.5). We suggest that NBAT expresses a combination of system b0,+ and y+L-like activities, possibly by interacting with different light-chain subunits endogenous to oocytes (as does the homologous 4F2hc protein). The C-terminus of NBAT may also have an additional, direct role in the mechanism of System b0,+ transport (the major transport activity that is defective in Type 1 cystinuria).


Sign in / Sign up

Export Citation Format

Share Document