scholarly journals Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguus of F344 rats

2009 ◽  
Vol 296 (2) ◽  
pp. R299-R308 ◽  
Author(s):  
Binbin Yan ◽  
Lihua Li ◽  
Scott W. Harden ◽  
David Gozal ◽  
Ying Lin ◽  
...  

Chronic intermittent hypoxia (CIH), as occurs in sleep apnea, impairs baroreflex-mediated reductions in heart rate (HR) and enhances HR responses to electrical stimulation of vagal efferent. We tested the hypotheses that HR responses to activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors in the nucleus ambiguus (NA) are reduced in CIH-exposed rats and that this impairment is associated with degeneration of glutamate receptor (GluR)-immunoreactive NA neurons. Fischer 344 rats (3–4 mo) were exposed to room air (RA) or CIH for 35–50 days ( n = 18/group). At the end of the exposures, AMPA (4 pmol, 20 nl) and NMDA (80 pmol, 20 nl) were microinjected into the same location of the left NA (−200 μm to +200 μm relative to caudal end of area postrema; n = 6/group), and HR and arterial blood pressure responses were measured. In addition, brain stem sections at the level of −800, −400, 0, +400, and +800 μm relative to obex were processed for AMPA and NMDA receptor immunohistochemistry. The number of NA neurons expressing AMPA receptors and NMDA receptors (NMDARs) was quantified. Compared with RA, we found that after CIH 1) HR responses to microinjection of AMPA into the left NA were reduced (RA −290 ± 30 vs. CIH −227 ± 15 beats/min, P < 0.05); 2) HR responses to microinjection of NMDA into the left NA were reduced (RA −302 ± 16 vs. CIH −238 ± 27 beats/min, P < 0.05); and 3) the number of NMDAR1, AMPA GluR1, and AMPA GluR2/3-immunoreactive cells in the NA was reduced ( P < 0.05). These results suggest that degeneration of NA neurons expressing GluRs contributes to impaired baroreflex control of HR in rats exposed to CIH.

2007 ◽  
Vol 293 (2) ◽  
pp. H997-H1006 ◽  
Author(s):  
Min Lin ◽  
Rugao Liu ◽  
David Gozal ◽  
William B. Wead ◽  
Mark W. Chapleau ◽  
...  

Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O2 and 5.7% O2, 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 ± 2.5 vs. RA: 78.9 ± 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 ± 8.9 beats/min; RA: 518.2 ± 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1–0.4 μg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH ( P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 μA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.


2007 ◽  
Vol 293 (5) ◽  
pp. H2809-H2818 ◽  
Author(s):  
He Gu ◽  
Min Lin ◽  
Jianyu Liu ◽  
David Gozal ◽  
Karie E. Scrogin ◽  
...  

Baroreflex control of heart rate (HR) is impaired after chronic intermittent hypoxia (CIH). However, the location and nature of this response remain unclear. We examined baroreceptor afferent, vagal efferent, and central components of the baroreflex circuitry. Fischer 344 (F344) rats were exposed to room air (RA) or CIH for 35–50 days and were then anesthetized with isoflurane, ventilated, and catheterized for measurement of mean arterial blood pressure (MAP) and HR. Baroreceptor function was characterized by measuring percent changes of integrated aortic depressor nerve (ADN) activity (Int ADNA) relative to the baseline value in response to sodium nitroprusside- and phenylephrine-induced changes in MAP. Data were fitted to a sigmoid logistic function curve. HR responses to electrical stimulation of the left ADN and the right vagus nerve were assessed under ketamine-acepromazine anesthesia. Compared with RA controls, CIH significantly increased maximum baroreceptor gain or maximum slope, maximum Int ADNA, and Int ADNA range (maximum − minimum Int ADNA), whereas other parameters of the logistic function were unchanged. In addition, CIH increased the maximum amplitude of bradycardic response to vagal efferent stimulation and decreased the time from stimulus onset to peak response. In contrast, CIH significantly reduced the maximum amplitude of bradycardic response to left ADN stimulation and increased the time from stimulus onset to peak response. Therefore, CIH decreased central mediation of the baroreflex but augmented baroreceptor afferent function and vagal efferent control of HR.


2003 ◽  
Vol 284 (3) ◽  
pp. H1003-H1007 ◽  
Author(s):  
Baojian Xue ◽  
Hope Gole ◽  
Jaya Pamidimukkala ◽  
Meredith Hay

This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: −3.0 ± 0.9 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: −5.8 ± 0.7 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.


2007 ◽  
Vol 103 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
Jian Cui ◽  
Sylvain Durand ◽  
Craig G. Crandall

Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 ± 0.2 to 29.8 ± 0.6°C; P < 0.001) and increased mean arterial blood pressure (85 ± 2 to 93 ± 3 mmHg; P < 0.001) without changing MSNA ( P = 0.47) or heart rate ( P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (−3.54 ± 0.29 units·beat−1·mmHg−1) was not significantly different from normothermic conditions (−2.94 ± 0.21 units·beat−1·mmHg−1; P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the “operating point” of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.


2021 ◽  
Vol 320 (1) ◽  
pp. F1-F16
Author(s):  
Sara AlMarabeh ◽  
Julie O’Neill ◽  
Jeremy Cavers ◽  
Eric F. Lucking ◽  
Ken D. O’Halloran ◽  
...  

We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.


Sign in / Sign up

Export Citation Format

Share Document