Localization of IP in rabbit kidney and functional role of the PGI2/IP system in cortical collecting duct

2002 ◽  
Vol 283 (4) ◽  
pp. F689-F698 ◽  
Author(s):  
Rania Nasrallah ◽  
Rolf M. Nusing ◽  
Richard L. Hébert

To clarify the role of the PGI2/PGI2 receptor (IP) system in rabbit cortical collecting duct (RCCD), we characterized the expression of IP receptors in the rabbit kidney. We show by Northern and Western blotting that IP mRNA and protein was detectable in all three regions of the kidney. To determine how PGI2 signals, we compared the effects of different PGI2 analogs [iloprost (ILP), carba-prostacyclin (c-PGI2), and cicaprost (CCP)] in the isolated perfused RCCD. PGI2 analogs did not increase water flow ( L p). Although PGI2 analogs did not reduce an established L p response to 8-chlorophenylthio-cAMP, they equipotently inhibited AVP-stimulated L p by 45%. The inhibitory effect of ILP and c-PGI2 on AVP-stimulated L p is partially reversed by the protein kinase C inhibitor staurosporine and abolished by pertussis toxin; no effect was obtained with CCP. In fura 2-loaded RCCD, CCP did not alter cytosolic Ca2+concentration ([Ca2+]i), but, in the presence of CCP, individual infusion of ILP and PGE2 increased [Ca2+]i, suggesting that CCP did not cause desensitization to either ILP or PGE2. We concluded that ILP and c-PGI2 activate PKC and the liberation of [Ca2+]i but not CCP. This suggested an important role for phosphatidylinositol hydrolysis in mediating ILP and c-PGI2 effects but not CCP in RCCD.

1990 ◽  
Vol 259 (2) ◽  
pp. F318-F325 ◽  
Author(s):  
R. L. Hebert ◽  
H. R. Jacobson ◽  
M. D. Breyer

It is well known that prostaglandin E2 (PGE2) both inhibits arginine vasopressin (AVP)-stimulated water permeability (hydraulic conductivity, Lp) in the cortical collecting duct (CCD) or, if administered alone, modestly increases Lp in the CCD. These bifunctional effects on Lp correspond to PGE2's capacity to inhibit AVP-stimulated adenylate cyclase (AC) activity, or to singularly stimulate AC activity in the collecting duct. The present studies suggest that the inhibitory effect of PGE2 on Lp may also be mediated by phosphatidylinositol (PI) hydrolysis. Using in vitro microperfused rabbit CCDs, we show that PGE2 releases Ca from intracellular stores. We also demonstrate that the inhibitory effect of PGE2 on AVP-stimulated Lp in the CCD is significantly reversed by the protein kinase C (PKC) inhibitor, staurosporine (SSP). Although PGE2 does not reduce an established water flow response to 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (8-CPTcAMP), when the sequence of addition is reversed and PGE2 is added first, marked inhibition of 8-CPTcAMP-induced Lp is observed. This provides independent evidence that PGE2 can act through a mechanism separate from modulating AC activity. PGE2 inhibition of 8-CPTcAMP-induced Lp is reversed by SSP pretreatment. Finally, SSP pretreatment also markedly potentiates the capacity of PGE2 itself to increase Lp. We conclude that PGE2 releases Ca from intracellular stores and, by activating PKC, inhibits AVP-induced osmotic water flow. This suggests an important role for PI hydrolysis in mediating PGE2's effects on the CCD.


1992 ◽  
Vol 263 (6) ◽  
pp. C1208-C1215 ◽  
Author(s):  
T. D. Noland ◽  
C. E. Carter ◽  
H. R. Jacobson ◽  
M. D. Breyer

In cultured cortical collecting duct (CCD) cells, exogenous prostaglandin E2 (PGE2) inhibited arginine vasopressin (AVP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) production in a concentration-dependent manner. Although pertussis toxin (PT, 500 ng/ml) alone did not reverse the PGE2-dependent inhibition, PT and staurosporine, a protein kinase C inhibitor, together partially reversed the effect of exogenous PGE2. In contrast, PT completely reversed the inhibition of AVP-dependent cAMP production by sulprostone. These data suggest that exogenous PGE2 can inhibit AVP-stimulated cAMP production and that the inhibitory effects of PGE2 are mediated by staurosporine- and PT-sensitive component(s). Short-term (15-240 min) incubation with phorbol 12-myristate 13-acetate (PMA, 10(-7) M) inhibited PGE2-stimulated cAMP production. Long-term (20 h) incubation with PMA augmented PGE2-stimulated cAMP production. These data provide evidence for the maintenance of a PT-sensitive PGE2-dependent inhibitory pathway of cAMP production in cultured CCD cells. In addition, data are presented that support an inhibitory role for protein kinase C in the effects of PGE2 on the metabolism of cAMP in these cells.


2007 ◽  
Vol 282 (49) ◽  
pp. 35757-35764 ◽  
Author(s):  
Naoshi Ogata ◽  
Hiroshi Kawaguchi ◽  
Ung-il Chung ◽  
Sanford I. Roth ◽  
Gino V. Segre

We explored the role of Gαq-mediated signaling on skeletal homeostasis by selectively expressing a constitutively active Gαq (mutation of Q209L) in osteoblasts. Continuous signaling via Gαq in mouse osteoblastic MC3T3-E1 cells impaired differentiation. Mice that expressed the constitutively active Gαq transgene in cells of the osteoblast lineage exhibited severe osteopenia in cortical and trabecular bones. Osteoblast number, bone volume, and trabecular thickness were reduced in transgenic mice, but the osteoclasts were unaffected. Osteoblasts from transgenic mice showed impaired differentiation and matrix formation. In the presence of a protein kinase C inhibitor GF109203X, this impairment was not seen, indicating mediation by the protein kinase C pathway. We propose that continuous activation of the Gαq signal in osteoblasts plays a crucial, previously unrecognized role in bone formation.


1997 ◽  
Vol 273 (6) ◽  
pp. F907-F915 ◽  
Author(s):  
Mark A. Lal ◽  
Chris R. J. Kennedy ◽  
Pierre R. Proulx ◽  
Richard L. Hébert

We have used an established cell line of rabbit cortical collecting duct (RCCD) epithelial cells representing a mixed population of principal and intercalated cell types to determine which phospholipase A2(PLA2) enzyme therein is responsible for bradykinin (BK)-stimulated arachidonic acid (AA) release and how its activation is regulated. BK-stimulated AA release was reduced 92% by arachidonyl trifluoromethyl ketone, an inhibitor of cytosolic PLA2(cPLA2). Examination of PLA2 activity in vitro demonstrated that BK stimulation resulted in a greater than twofold increase in PLA2 activity and that this activity was dithiothreitol insensitive and was inhibited by an antibody directed against cPLA2. To determine a possible role for protein kinase C (PKC) in the BK-mediated activation of cPLA2, we used the PKC-specific inhibitor Ro31-8220 and examined its effects on AA release, cPLA2 activity, and phosphorylation. Ro31-8220 reduced BK-stimulated AA release and cPLA2 activity by 51 and 58%, respectively. cPLA2 activity stimulated by phorbol ester [phorbol 12-myristate 13-acetate (PMA)] displayed a similar degree of activation and was associated with an increase in serine phosphorylation identical to that caused by BK. The phosphorylation-induced activation of this enzyme was confirmed by the phosphatase-mediated reversal of both BK- and PMA-stimulated cPLA2 activity. In addition, we have also found that PMA stimulation did not cause a synergistic potentiation of BK-stimulated AA release as did calcium ionophore. This occurred despite membrane PKC activity increasing 93% in response to PMA vs. 42% in response to BK. These data, taken together, indicate that cPLA2 is the enzyme responsible for BK-mediated AA release, and, moreover, they indicate that PKC is involved in the onset responses of cPLA2 to BK.


1999 ◽  
Vol 46 (1) ◽  
pp. 99-106 ◽  
Author(s):  
A Dygas ◽  
M Sidorko ◽  
M Bobeszko ◽  
J Barańska

In the present study we investigate the effect of exogenous sphingosine, sphingosine 1-phosphate and sphingosylphosphorylcholine on phospholipase D (PLD) activity in glioma C6 cells. The cells were prelabeled with [1-14C]palmitic acid and PLD-mediated synthesis of [14C]phosphatidylethanol was measured. Sphingosine 1-phosphate and sphingosylphosphorylcholine did not stimulate [14C]phosphatidylethanol formation either at low (0.1-10 microM) or high (25-100 microM) concentrations. On the other hand, sphingosine at concentrations of 100-250 microM strongly stimulated PLD activity as compared to the effect of phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), known as a PLD activator. The effect of TPA on PLD is linked to the activation of protein kinase C. The present study also shows that sphingosine additively enhances TPA-mediated PLD activity. This is in contrast to the postulated role of sphingosine as a protein kinase C inhibitor. These results demonstrate that in glioma C6 cells sphingosine not only affects PLD independently of its effect on protein kinase C, but also is unable to block TPA-mediated PLD activity.


2014 ◽  
Vol 189 (2) ◽  
pp. 198-206 ◽  
Author(s):  
Guo-Qiang Zhong ◽  
Rong-Hui Tu ◽  
Zhi-Yu Zeng ◽  
Qing-jie Li ◽  
Yan He ◽  
...  

1991 ◽  
Vol 260 (1) ◽  
pp. H27-H36 ◽  
Author(s):  
M. Endou ◽  
Y. Hattori ◽  
N. Tohse ◽  
M. Kanno

This study was performed to determine whether activation of protein kinase C is responsible for the positive inotropic effect of alpha 1-adrenoceptor stimulation in rat papillary muscle. In the presence of 1 microM propranolol, phenylephrine (10 microM) produced triphasic inotropic response that was accompanied by prolongation of action potential duration (APD) and hyperpolarization of membrane potential. Phorbol 12,13-dibutyrate (PDBu, 0.1 microM) abolished the negative inotropic effect of phenylephrine and apparently resulted in enhancement of the positive inotropic effect. PDBu also attenuated the phenylephrine-induced hyperpolarization without affecting the APD prolongation. However, such changes were not observed with 12-O-tetradecanoylphorbol-13-acetate (TPA, 0.1 microM). Neither PDBu nor TPA increased the force of contraction or prolonged APD similar to phenylephrine. The protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H 7, 10 microM) did not suppress the changes induced by PDBu, and more importantly H 7 did not affect the inotropic and electrophysiological effects of phenylephrine. Both TPA and PDBu significantly inhibited the phenylephrine-induced phosphoinositide hydrolysis as measured by [3H]inositol monophosphate, and these inhibitory effects were eliminated in the presence of H 7. Our results provide an argument against a role of protein kinase C activation in the alpha 1-adrenoceptor-mediated inotropic and electrophysiological effects.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 229-237 ◽  
Author(s):  
J Laredo ◽  
A Huynh ◽  
C Muller ◽  
JP Jaffrezou ◽  
JD Bailly ◽  
...  

Abstract The effect of the protein kinase C (PKC) inhibitor staurosporine (ST) on the chemosensitivity of normal (colony-forming unit granulocyte- macrophage [CFU-GM]) and leukemic (acute myeloid leukemia-CFU [AML- CFU]) myeloid progenitors to daunorubicin (DNR) was evaluated. Primary colony inhibition assays allowed us to characterize two distinct groups of AML, a DNR-resistant group (patients no. 1 through 6), which displayed significantly lower DNR sensitivity than normal CFU-GM (D50 = 11.3 +/- 1.4 ng/mL v 1.8 +/- 0.5 ng/mL, after 7 days of exposure, respectively; P < 0.01) and a DNR-sensitive group (patients no. 7 through 12) with D50 = 2.7 +/- 0.4 ng/mL. This classification remained unaltered when assessed by secondary colony inhibition assay (evaluating the self-renewal fraction of AML-CFU) or by viability assay (evaluating the ultimately differentiated blast cell population), suggesting that the DNR sensitivity profile in maintained throughout AML-CFU differentiation. DNR resistance of the differentiated blast cell population was not correlated with the level of P-glycoprotein (P- gp) expression but rather with the ability to extrude rhodamine 123 (Rh123). ST used at subtoxic concentrations induced a twofold to threefold enhancement of DNR cytotoxicity, increased Rh123 accumulation, and decreased Rh123 efflux kinetics in resistant AML cells. These effects were observed for ST concentrations much lower than those required to displace the P-gp-binding probe azidoprazosin, suggesting that ST might act through its PKC inhibitory effect and not through P-gp binding. Finally, this study provides evidence that DNR resistance in AML cells is, at least in part, related to the multidrug- resistance (MDR) phenotype. Because P-gp function can be downregulated by ST, it seems likely that the MDR pheno-type can be functionally regulated by cellular signalization in AML cells.


Sign in / Sign up

Export Citation Format

Share Document