glycoprotein p
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 205)

H-INDEX

42
(FIVE YEARS 8)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2172
Author(s):  
Agnieszka Karbownik ◽  
Danuta Szkutnik-Fiedler ◽  
Tomasz Grabowski ◽  
Anna Wolc ◽  
Joanna Stanisławiak-Rudowicz ◽  
...  

A combination of the tyrosine kinase inhibitor—sorafenib—and the opioid analgesic—morphine—can be found in the treatment of cancer patients. Since both are substrates of P-glycoprotein (P-gp), and sorafenib is also an inhibitor of P-gp, their co-administration may affect their pharmacokinetics, and thus the safety and efficacy of cancer therapy. Therefore, the aim of this study was to evaluate the potential pharmacokinetic drug–drug interactions between sorafenib and morphine using an animal model. The rats were divided into three groups that Received: sorafenib and morphine (ISOR+MF), sorafenib (IISOR), and morphine (IIIMF). Morphine caused a significant increase in maximum plasma concentrations (Cmax) and the area under the plasma concentration–time curves (AUC0–t, and AUC0–∞) of sorafenib by 108.3 (p = 0.003), 55.9 (p = 0.0115), and 62.7% (p = 0.0115), respectively. Also, the Cmax and AUC0–t of its active metabolite—sorafenib N-oxide—was significantly increased in the presence of morphine (p = 0.0022 and p = 0.0268, respectively). Sorafenib, in turn, caused a significant increase in the Cmax of morphine (by 0.5-fold, p = 0.0018). Moreover, in the presence of sorafenib the Cmax, AUC0–t, and AUC0–∞ of the morphine metabolite M3G increased by 112.62 (p < 0.0001), 46.82 (p = 0.0124), and 46.78% (p = 0.0121), respectively. Observed changes in sorafenib and morphine may be of clinical significance. The increased exposure to both drugs may improve the response to therapy in cancer patients, but on the other hand, increase the risk of adverse effects.


Author(s):  
Ananthkumar Kammala ◽  
Meagan Benson ◽  
Esha Ganguly ◽  
Lauren Richardson ◽  
Ramkumar Menon

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert W. Robey ◽  
Andrea N. Robinson ◽  
Fatima Ali-Rahmani ◽  
Lyn M. Huff ◽  
Sabrina Lusvarghi ◽  
...  

AbstractCapillary endothelial cells of the human blood–brain barrier (BBB) express high levels of P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2). However, little information is available regarding ATP-binding cassette transporters expressed at the zebrafish BBB, which has emerged as a potential model system. We report the characterization and tissue localization of two genes that are similar to ABCB1, zebrafish abcb4 and abcb5. When stably expressed in HEK293 cells, both Abcb4 and Abcb5 conferred resistance to P-gp substrates; however, Abcb5 poorly transported doxorubicin and mitoxantrone compared to zebrafish Abcb4. Additionally, Abcb5 did not transport the fluorescent P-gp probes BODIPY-ethylenediamine or LDS 751, while they were transported by Abcb4. High-throughput screening of 90 human P-gp substrates confirmed that Abcb4 has an overlapping substrate specificity profile with P-gp. In the brain vasculature, RNAscope probes for abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. The abcb4 probe also colocalized with claudin-5 in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, potentially indicating different functions. The data suggest that zebrafish Abcb4 functionally phenocopies P-gp and that the zebrafish may serve as a model to study the role of P-gp at the BBB.


2021 ◽  
Vol 24 ◽  
pp. 563-570
Author(s):  
Yusuke Tanaka ◽  
Taiki Harada ◽  
Kazuhiro Ito ◽  
Takanori Kurakazu ◽  
Satoshi Kasaoka

Purpose: The aim of this study was to evaluate the intraluminal behavior of various transporter substrates in different regions of the gastrointestinal (GI) tract. Methods: Drug solutions containing non-absorbable FITC-dextran 4000 (FD-4), were orally administered to rats. Residual water was sampled from the GI regions to measure the luminal drug concentration. Results: Cephalexin (CEX), a substrate of the proton-coupled oligopeptide transporter, was absorbed rapidly, and no drug was detected in the lower small intestine. Saquinavir (SQV) was primarily absorbed in the upper region. However, unlike CEX, SQV was detected even in the lower segment probably due to the efflux of SQV via P-glycoprotein (P-gp). The concentration of methotrexate (MTX) showed a similar pattern to that of non-absorbable FD-4. The low absorption of MTX was probably due to efflux via several efflux transporters, and the limited expression of proton-coupled folate transporter, an absorptive transporter for MTX, in the upper region. Conclusion: This study revealed that the luminal concentration pattern of each drug differed considerably depending on the site because of the different absorption properties and luminal volumes. Although further investigation using a specific transporter inhibitor or transporter-knockout animals are necessary to clarify the actual contribution of each transporter to the drug absorption, this information will be valuable in evaluating transporter-mediated drug absorption in in vitro transport studies for ensuring optimal drug concentrations.


2021 ◽  
Author(s):  
Bin Du ◽  
Mei Zheng ◽  
Jingshu Huang ◽  
Qingqing Jiao ◽  
Yimeng Bai ◽  
...  

Abstract Multidrug resistance is still a major obstacle to cancer treatment. The most studies are to inhibit the activity of the drug transporter P-glycoprotein (P-gp), but the effect is not ideal. Herein, a nanosystem was built based on cascade catalytic consumption of cholesterol. Cholesterol oxidase (natural enzyme, COD) was immobilized on the carrier (NH2-MIL-88B, MOF) through amide reaction, COD catalyzed the consumption of cholesterol, the reaction product H2O2 was further produced by the MOF with its peroxidase-like activity to produce hydroxyl radicals (•OH) with killing effect. Due to the high expression of CD44 receptor on the surface of tumor cells, we encapsulated chondroitin sulfate gel shell (CS-shell) with CD44 targeting and apoptosis promoting effect on the surface of DOX@MOF-COD nanoparticles, which can accurately and efficiently deliver the drugs to the tumor site and improve the effect of reversing drug resistance. Taking drug-resistant cell membrane as "breakthrough", this paper will provide a new idea for reversing multidrug resistance of tumor.


Author(s):  
Hailey Scott ◽  
Lilian M Martinelli ◽  
David Grynspan ◽  
Enrrico Bloise ◽  
Kristin L  Connor

Abstract Context Preterm birth (PTB) and suboptimal prepregnancy body mass index (BMI) operate through inflammatory pathways to impair fetoplacental development. Placental efflux transporters mediate fetal protection and nutrition, however few studies consider the effect of both PTB and BMI on fetal protection. We hypothesized that PTB would alter the expression of placental multidrug resistance (MDR) transporters and selected pro-inflammatory cytokines, and that maternal underweight and obesity would further impair placental phenotype. Objective To determine whether placental MDR transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2), and pro-inflammatory cytokine levels are altered by PTB and maternal BMI. Design and Outcomes A cross-sectional study was conducted to assess the effect of PTB (+/- chorioamnionitis), or the effect of maternal prepregnancy BMI on placental MDR transporter and interleukin [IL]-6 and 8 expression in 60 preterm and 36 term pregnancies. Results ABCB1 expression was increased in preterm compared to term placentae (p=0.04). P-gp (p=0.008) and BCRP (p=0.01) immunolabeling was increased among all preterm compared to term placentae, with P-gp expression further increased in preterm pregnancies with chorioamnionitis (PTC, p=0.007). Placental IL-6 mRNA expression was decreased in PTC compared to term placentae (p=0.0005), and PTC associated with the greatest proportion of anti-inflammatory medications administered during pregnancy. Maternal BMI group did not influence placental outcomes. Conclusions PTB and infection, but not prepregnancy BMI, alter placental expression of MDR transporters and IL-6. This may have implications for fetal exposure to xenobiotics that may be present in the maternal circulation in pregnancies complicated by PTB.


Author(s):  
Mandeep Kaur ◽  
◽  
Tulika Gupta ◽  
Mili Gupta ◽  
Parampreet S. Kharbanda ◽  
...  

About 30% of epileptic patients do not react to anti-epileptic drugs leading to refractory seizures. The pathogenesis of drug-resistance in Mesial Temporal Lobe Epilepsy (MTLE) is not completely understood. Increased activity of drug-efflux transporters might be involved, resulting in subclinical concentrations of the drug at the target site. The major drug-efflux transporters are permeability glycoprotein (P-gp) and multidrug-resistance associated protein-1 (MRP-1). The major drawback so far is the expressional analysis of transporters in equal numbers of drug-resistant epileptic tissue and age-matched non-epileptic tissue. We have studied these two transporters in the sclerotic hippocampal tissues resected from the epilepsy surgery (n=15) and compared their expression profile with the tissues resected from non-epileptic autopsy cases (n=15). Statistically significant over expression of both P-gp (p-value <0.0001) and MRP-1 (p-value 0.01) at gene and protein levels was found in the MTLE cases. The fold change of P-gp was more pronounced than MRP-1. Immunohistochemistry of patient group showed increased immunoreactivity of P-gp at blood brain barrier and increased reactivity of MRP-1 in parenchyma. The results were confirmed by confocal immunofluorescence microscopy. The study demonstrated that P-gp in association with MRP-1 might be responsible for the multi-drug resistance in epilepsy


2021 ◽  
Vol 3 ◽  
Author(s):  
Neeraj Kaushal ◽  
Zhe-Sheng Chen ◽  
Senshang Lin

The present study evaluates poly (butyl cyanoacrylate) nanoparticles (PBCA-NPs), double-coated with Tween 80 and polyethylene glycol (PEG) 20,000 as a potential carrier system for overcoming P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP)-mediated multidrug resistance (MDR) in cancer cell lines. Doxorubicin-loaded PBCA-NPs were prepared by the anionic polymerization method and were successively double-coated with Tween 80 and PEG 20000 at varied concentrations. MDR reversing potential was investigated by cellular uptake in P-gp overexpressing cell line. And, the outcomes were verified by modified MTT assay in P-gp or BCRP overexpressing cell lines. The findings from the cell uptake study indicate that double-coated PBCA-NPs significantly enhanced doxorubicin accumulation within the cells. MTT assays revealed that double-coated PBCA-NPs significantly potentiated the sensitivity of doxorubicin in P-gp overexpressing cells, in comparison to free doxorubicin, single-, and un-coated PBCA-NPs, respectively. Moreover, further increase in concentration with Tween 80, double-coated PBCA-NPs significantly enhanced the sensitivity of doxorubicin in BCRP overexpressing cell line, in comparison to single- and double-coated formulations (with lower concentration of Tween 80). Hence, it could be concluded that double-coated PBCA-NPs can be used as a potential carrier for enhancing doxorubicin accumulation in MDR cancer cells.


2021 ◽  
Author(s):  
Kristin Connor ◽  
Enrrico Bloise ◽  
Todd Z DeSantis ◽  
Stephen J Lye

Malnutrition can influence maternal physiology and programme offspring development. Yet, in pregnancy, little is known about how dietary challenges that influence maternal phenotype affect gut structure and function. Emerging evidence suggests that interactions between the environment, multidrug resistance (MDR) transporters and microbes may influence maternal adaptation to pregnancy and regulate fetoplacental development. We hypothesised that the pregnancy gut holobiont (host and microbes) adapts differently to suboptimal maternal diets, evidenced by changes in the gut microenvironment, morphology, and expression of key protective MDR transporters during pregnancy. Mice were fed a control diet (CON) during pregnancy, or undernourished (UN) by 30% of control intake from gestational day (GD)5.5-18.5, or fed 60% high fat diet (HF) for eight weeks before and during pregnancy. At GD18.5, maternal small intestinal (SI) architecture (H&E), proliferation (Ki67), P-glycoprotein (P-gp - encoded by Abcb1a/b) and breast cancer resistance protein (BCRP/Abcg2) MDR transporter expression and levels of pro-inflammatory biomarkers were assessed. Circulating inflammatory biomarkers and maternal caecal microbiome composition (G3 PhyloChipTM) were measured. MDR transporter expression was also assessed in fetal gut. HF diet increased maternal SI crypt depth and proinflammatory load, and decreased SI expression of Abcb1a mRNA, whilst UN increased SI villi proliferation and Abcb1a, but decreased Abcg2, mRNA expression. There were significant associations between Abcb1a and Abcg2 mRNA levels with relative abundance of specific microbial taxa. Using a systems physiology approach we report that common nutritional adversities provoke adaptations in the pregnancy holobiont in mice, and reveal new mechanisms that could influence reproductive outcomes and fetal development.


2021 ◽  
Vol 22 (20) ◽  
pp. 10920
Author(s):  
Izabela Jęśkowiak ◽  
Benita Wiatrak ◽  
Adam Szeląg ◽  
Marcin Mączyński

(1) Background: Melanoma is an aggressive neoplasm derived from melanocyte precursors with a high metastatic potential. Responses to chemotherapy and immunotherapy for melanoma remain weak, underlining the urgent need to develop new therapeutic strategies for the treatment of melanoma. (2) Methods: The viability of NHDF and A375 cell cultures after the administration of the tested isoxazole derivatives was assessed after 24-h and 48-h incubation periods with the test compounds in the MTT test. ROS and NO scavenging analyses, a glycoprotein-P activity analysis, a migration assay, a test of apoptosis, and a multiple-criteria decision analysis were also performed. (3) Results: All compounds that were tested resulted in a slower migration of melanoma neoplastic cells. The mechanism of the antitumor activity of the tested compounds was confirmed—i.e., the pro-apoptotic activity of the compounds in A375 cell cultures. Compound O7K qualified for further research. (4) Conclusions: All the tested compounds inhibited the formation of melanoma metastases and demonstrated the ability to reduce the risk of developing drug resistance in the tumor. The MCDA results showed that O7K showed the strongest antitumor activity.


Sign in / Sign up

Export Citation Format

Share Document