Bradykinin-stimulated cPLA2phosphorylation is protein kinase C dependent in rabbit CCD cells

1997 ◽  
Vol 273 (6) ◽  
pp. F907-F915 ◽  
Author(s):  
Mark A. Lal ◽  
Chris R. J. Kennedy ◽  
Pierre R. Proulx ◽  
Richard L. Hébert

We have used an established cell line of rabbit cortical collecting duct (RCCD) epithelial cells representing a mixed population of principal and intercalated cell types to determine which phospholipase A2(PLA2) enzyme therein is responsible for bradykinin (BK)-stimulated arachidonic acid (AA) release and how its activation is regulated. BK-stimulated AA release was reduced 92% by arachidonyl trifluoromethyl ketone, an inhibitor of cytosolic PLA2(cPLA2). Examination of PLA2 activity in vitro demonstrated that BK stimulation resulted in a greater than twofold increase in PLA2 activity and that this activity was dithiothreitol insensitive and was inhibited by an antibody directed against cPLA2. To determine a possible role for protein kinase C (PKC) in the BK-mediated activation of cPLA2, we used the PKC-specific inhibitor Ro31-8220 and examined its effects on AA release, cPLA2 activity, and phosphorylation. Ro31-8220 reduced BK-stimulated AA release and cPLA2 activity by 51 and 58%, respectively. cPLA2 activity stimulated by phorbol ester [phorbol 12-myristate 13-acetate (PMA)] displayed a similar degree of activation and was associated with an increase in serine phosphorylation identical to that caused by BK. The phosphorylation-induced activation of this enzyme was confirmed by the phosphatase-mediated reversal of both BK- and PMA-stimulated cPLA2 activity. In addition, we have also found that PMA stimulation did not cause a synergistic potentiation of BK-stimulated AA release as did calcium ionophore. This occurred despite membrane PKC activity increasing 93% in response to PMA vs. 42% in response to BK. These data, taken together, indicate that cPLA2 is the enzyme responsible for BK-mediated AA release, and, moreover, they indicate that PKC is involved in the onset responses of cPLA2 to BK.

2002 ◽  
Vol 283 (4) ◽  
pp. F689-F698 ◽  
Author(s):  
Rania Nasrallah ◽  
Rolf M. Nusing ◽  
Richard L. Hébert

To clarify the role of the PGI2/PGI2 receptor (IP) system in rabbit cortical collecting duct (RCCD), we characterized the expression of IP receptors in the rabbit kidney. We show by Northern and Western blotting that IP mRNA and protein was detectable in all three regions of the kidney. To determine how PGI2 signals, we compared the effects of different PGI2 analogs [iloprost (ILP), carba-prostacyclin (c-PGI2), and cicaprost (CCP)] in the isolated perfused RCCD. PGI2 analogs did not increase water flow ( L p). Although PGI2 analogs did not reduce an established L p response to 8-chlorophenylthio-cAMP, they equipotently inhibited AVP-stimulated L p by 45%. The inhibitory effect of ILP and c-PGI2 on AVP-stimulated L p is partially reversed by the protein kinase C inhibitor staurosporine and abolished by pertussis toxin; no effect was obtained with CCP. In fura 2-loaded RCCD, CCP did not alter cytosolic Ca2+concentration ([Ca2+]i), but, in the presence of CCP, individual infusion of ILP and PGE2 increased [Ca2+]i, suggesting that CCP did not cause desensitization to either ILP or PGE2. We concluded that ILP and c-PGI2 activate PKC and the liberation of [Ca2+]i but not CCP. This suggested an important role for phosphatidylinositol hydrolysis in mediating ILP and c-PGI2 effects but not CCP in RCCD.


1990 ◽  
Vol 259 (2) ◽  
pp. F318-F325 ◽  
Author(s):  
R. L. Hebert ◽  
H. R. Jacobson ◽  
M. D. Breyer

It is well known that prostaglandin E2 (PGE2) both inhibits arginine vasopressin (AVP)-stimulated water permeability (hydraulic conductivity, Lp) in the cortical collecting duct (CCD) or, if administered alone, modestly increases Lp in the CCD. These bifunctional effects on Lp correspond to PGE2's capacity to inhibit AVP-stimulated adenylate cyclase (AC) activity, or to singularly stimulate AC activity in the collecting duct. The present studies suggest that the inhibitory effect of PGE2 on Lp may also be mediated by phosphatidylinositol (PI) hydrolysis. Using in vitro microperfused rabbit CCDs, we show that PGE2 releases Ca from intracellular stores. We also demonstrate that the inhibitory effect of PGE2 on AVP-stimulated Lp in the CCD is significantly reversed by the protein kinase C (PKC) inhibitor, staurosporine (SSP). Although PGE2 does not reduce an established water flow response to 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (8-CPTcAMP), when the sequence of addition is reversed and PGE2 is added first, marked inhibition of 8-CPTcAMP-induced Lp is observed. This provides independent evidence that PGE2 can act through a mechanism separate from modulating AC activity. PGE2 inhibition of 8-CPTcAMP-induced Lp is reversed by SSP pretreatment. Finally, SSP pretreatment also markedly potentiates the capacity of PGE2 itself to increase Lp. We conclude that PGE2 releases Ca from intracellular stores and, by activating PKC, inhibits AVP-induced osmotic water flow. This suggests an important role for PI hydrolysis in mediating PGE2's effects on the CCD.


1992 ◽  
Vol 263 (6) ◽  
pp. C1208-C1215 ◽  
Author(s):  
T. D. Noland ◽  
C. E. Carter ◽  
H. R. Jacobson ◽  
M. D. Breyer

In cultured cortical collecting duct (CCD) cells, exogenous prostaglandin E2 (PGE2) inhibited arginine vasopressin (AVP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) production in a concentration-dependent manner. Although pertussis toxin (PT, 500 ng/ml) alone did not reverse the PGE2-dependent inhibition, PT and staurosporine, a protein kinase C inhibitor, together partially reversed the effect of exogenous PGE2. In contrast, PT completely reversed the inhibition of AVP-dependent cAMP production by sulprostone. These data suggest that exogenous PGE2 can inhibit AVP-stimulated cAMP production and that the inhibitory effects of PGE2 are mediated by staurosporine- and PT-sensitive component(s). Short-term (15-240 min) incubation with phorbol 12-myristate 13-acetate (PMA, 10(-7) M) inhibited PGE2-stimulated cAMP production. Long-term (20 h) incubation with PMA augmented PGE2-stimulated cAMP production. These data provide evidence for the maintenance of a PT-sensitive PGE2-dependent inhibitory pathway of cAMP production in cultured CCD cells. In addition, data are presented that support an inhibitory role for protein kinase C in the effects of PGE2 on the metabolism of cAMP in these cells.


1992 ◽  
Vol 263 (1) ◽  
pp. F1-F6 ◽  
Author(s):  
B. A. Stoos ◽  
O. A. Carretero ◽  
J. L. Garvin

Previous data suggest that atrial natriuretic factor (ANF) and bradykinin (BK) interact to increase Na+ and water excretion. We propose that this interaction is due to a synergistic action that inhibits Na+ absorption in the distal nephron. We examined the effects of BK and ANF on transport by monolayers of a cortical collecting duct cell line, M-1. BK (10(-8) M) had no effect on short-circuit current (Isc). Similarly, ANF (10(-8) M) did not inhibit Isc. In contrast, Isc decreased by 18% (from 57 +/- 8 to 46 +/- 6 microA/cm2) when BK and ANF were added simultaneously at this concentration (P less than 0.05). Because guanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase C are implicated in the second messenger cascades of ANF and BK, we investigated their potential roles in mediating this interaction. Dibutyryl-cGMP (10(-4) M) inhibited Isc from 33 +/- 4 to 22 +/- 3 microA/cm2 (P less than 0.05) in the presence of BK but not in its absence. Staurosporine and calphostin C, inhibitors of protein kinase C, completely blocked the decrease in Isccaused by simultaneous addition of ANF and BK. cAMP levels in M-1 cells were not affected by either ANF alone or BK alone; however, when cultures were treated with both hormones, cAMP decreased from 856 +/- 56 to 332 +/- 26 fmol/10(6) cells (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 267 (1) ◽  
pp. F44-F48 ◽  
Author(s):  
M. Bonilla-Felix ◽  
C. John-Phillip

The immature kidney is characterized by resistance to arginine vasopressin (AVP). In the immature cortical collecting duct (iCCD), AVP-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) generation is decreased, but the mechanisms involved are not known. We examined cAMP production in isolated CCD from immature and mature rabbits. Cellular cAMP levels were measured by radioimmunoassay under basal conditions and after stimulation with hormone. Basal cAMP production in the iCCD was not different from that in the mature CCD (mCCD). In contrast, AVP- and forskolin-stimulated cAMP generation were severely decreased in the iCCD. Inhibition of endogenous prostaglandin production by indomethacin increased AVP-stimulated cAMP generation in the iCCD to levels that were not different from the mCCD. Inhibition of protein kinase C (PKC) by staurosporine and inhibition of Gi by pertussis toxin elicited a mature cAMP response in the iCCD. These data suggest that the defect in AVP-stimulated cAMP production in the iCCD is mediated by prostaglandins via 1) activation of Gi and 2) direct inhibition of the adenylyl cyclase catalytic subunit. In addition, PKC appears to play a significant role.


1995 ◽  
Vol 6 (4) ◽  
pp. 1223-1229
Author(s):  
E Schlatter ◽  
S Haxelmans ◽  
I Ankorina ◽  
R Kleta

In principal cells of rat cortical collecting ducts (CCD) cellular pH (pHi) is regulated by basolateral Na+/H+ exchange. The influence of various agonists on pHi and cellular Ca2+ activity ([Ca2+]i) in freshly isolated CCD cells was examined with BCECF and fura-2 fluorescence ratios. The recovery of pHi per minute (delta pH/min) after an acid load was 0.26 +/- 0.03 (N = 53) in control conditions and was increased by the diadenosine polyphosphates Ap4A, Ap5A, Ap6A, the phorbol ester phorbol 12-myristat 13-acetate (PMA) (each 5 mumol/L) and angiotensin II (100 nmol/L) by 0.05 +/- 0.02 (N = 10), 0.11 +/- 0.05 (N = 13), 0.09 +/- 0.02 (N = 24), 0.10 +/- 0.03 (N = 7), and 0.09 +/- 0.03 (N = 8), respectively. Vasopressin (10 nmol/L) decreased delta pH/min by 0.11 +/- 0.03 (N = 9); ATP and Ap3A (each 5 mumol/L) had no significant effect. The increase in delta pH/min with Ap6A was abolished in the presence of an inhibitor of protein kinase C, calphostin C (0.1 mumol/l, N = 8). Fura-2 fluorescence ratio was not significantly changed with angiotensin II, Ap3A, or Ap4A but increased with vasopressin, ATP, Ap5A, and Ap6A by 0.08 +/- 0.02 (N = 13), 0.04 +/- 0.02 (N = 13), 0.03 +/- 0.01 (N = 14), and 0.03 +/- 0.01 (N = 10), respectively. These data indicate that Na+/H+ exchange in rat CCD is activated by the stimulation of a Ca(2+)-independent protein kinase C and inhibited by protein kinase A.


1992 ◽  
Vol 89 (3) ◽  
pp. 834-841 ◽  
Author(s):  
E M Schwiebert ◽  
K H Karlson ◽  
P A Friedman ◽  
P Dietl ◽  
W S Spielman ◽  
...  

1987 ◽  
Author(s):  
S Krishnamurthi ◽  
V V Kakkar

We have compared the abilities of exogenously added U46619, the PG endoperoxide analogue and, sn-l-oleoyl 2-acetylglycerol (OAG) and sn-1,2-dioctanoylglycerol (diCg), the membrane-permeant DAG analogues, at restoring weak agonist-induced secretion in indomethacin (10μM)-treated platelets (I-PL) in the absence of endogenous PG/Tx synthesis. [14C]-5HT secretion from pre-loaded, washed human platelets was correlated with the levels of [Ca2+]i, using platelets loaded with quin 2. Concentrations of OAG (62-125μM) and diCg (15-30μM), which have previously been shown to be fully effective at activating protein kinase C, failed to significantly enhance [14C]-5HT secretion in combination with ADP (10μM), adrenaline (10μM) or PAF (0.2μM) although they potentiated platelet aggregation, when added 10-30 sec after these agonists to I-PL. eg ADP-0%, 30jiM diCg-9.8%, ADP+diCg-11.9%, 5HT release (p>O.05). In contrast, a low concentration of U46619 (0.2μM), that induced no aggregation, [14C]-5HT secretion or rise in [Ca2+]i levels on its own, was able to synergize strongly at potentiating secretion in combination with all three weak agonists examined, as well as in combination with OAG and diCg (U46619-0%, ADP+U46619-20.4%, U46619+30μM diC8-48% 5HT release) . The greater effectiveness of U46619 at potentiating secretion in combination with the weak agonists was not related to different degrees of [Ca2+]i mobilisation, as ADP and PAF-induced rise in [Ca2+]i occurred to a similar degree in the presence of U46619 and diCg. At a higher concentration of U46619 (0.6μM), which was maximally effective at inducing secretion and elevating [Ca2+]i levels on its own, addition of the weak agonists or OAG or diCg, along with U46619, resulted in a further enhancement of secretion which was independent of changes in [Ca2+]i levels. The results demonstrate that U46619 but not OAG or diCg, is able to fully restore weak agonist-induced secretion in indomethacin-treated platelets, suggesting that the actions of endogenously formed PG endoperoxides/TxA2 cannot be substituted by DAG and raised [Ca2+]i levels and, may be mediated via a mechanism additional to that involving these mediators.


1999 ◽  
Vol 276 (2) ◽  
pp. H535-H542 ◽  
Author(s):  
H. mac Wu ◽  
Yuan Yuan ◽  
David C. Zawieja ◽  
John Tinsley ◽  
Harris J. Granger

We previously demonstrated that vascular endothelial growth factor (VEGF)-elicited increase in the permeability of coronary venules was blocked by the nitric oxide (NO) synthase inhibitor N G-monomethyl-l-arginine (l-NMMA). The aim of this study was to delineate in more detail the signaling pathways upstream from NO production in VEGF-induced venular hyperpermeability. The apparent permeability coefficient of albumin ( P a) and endothelial cytosolic Ca2+concentration ([Ca2+]i) were measured in intact perfused porcine coronary venules using fluorescence microscopy. VEGF (10−10 M) induced a two- to threefold increase in P a, which was blocked by a monoclonal antibody directed against the VEGF receptor Flk-1/KDR, the phospholipase C (PLC) antagonist U-73122, or the protein kinase C (PKC) antagonist bisindolylmaleimide (BIM). In 12 venules that displayed the [Ca2+]iresponse to bradykinin (10−6M) and ionomycin (10−6 M), only 4 vessels responded to VEGF with a transient increase in [Ca2+]i. Furthermore, Western blot analysis of cultured human umbilical vein endothelial cells showed that VEGF increased tyrosine phosphorylation of PLC-γ and serine phosphorylation of endothelial constitutive NO synthase (ecNOS). The hyperphosphorylation of PLC-γ was greatly attenuated by the KDR receptor antibody and U-73122, but not by BIM orl-NMMA. In contrast, U-73122 and BIM were able to inhibit VEGF-elicited serine phosphorylation of ecNOS. The results suggest that VEGF induces venular hyperpermeability through a KDR receptor-mediated activation of PLC. In turn, ecNOS is activated by PLC-mediated PKC and/or cytosolic Ca2+ elevation stimulation.


Sign in / Sign up

Export Citation Format

Share Document