Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct

2005 ◽  
Vol 289 (4) ◽  
pp. F922-F932 ◽  
Author(s):  
Fadi Najjar ◽  
Hao Zhou ◽  
Tetsuji Morimoto ◽  
James B. Bruns ◽  
Hai-Sheng Li ◽  
...  

The cortical collecting duct (CCD) is a final site for regulation of K+ homeostasis. CCD K+ secretion is determined by the electrochemical gradient and apical permeability to K+. Conducting secretory K+ (SK/ROMK) and maxi-K channels are present in the apical membrane of the CCD, the former in principal cells and the latter in both principal and intercalated cells. Whereas SK channels mediate baseline K+ secretion, maxi-K channels appear to participate in flow-stimulated K+ secretion. Chronic dietary K+ loading enhances the CCD K+ secretory capacity due, in part, to an increase in SK channel density (Palmer et al., J Gen Physiol 104: 693–710, 1994). Long-term exposure of Ambystoma tigrinum to elevated K+ increases renal K+ excretion due to an increase in apical maxi-K channel density in their CDs (Stoner and Viggiano, J Membr Biol 162: 107–116, 1998). The purpose of the present study was to test whether K+ adaptation in the mammalian CCD is associated with upregulation of maxi-K channel expression. New Zealand White rabbits were fed a low (LK), control (CK), or high (HK) K+ diet for 10–14 days. Real-time PCR quantitation of message encoding maxi-K α- and β2–4-subunits in single CCDs from HK animals was greater than that detected in CK and LK animals ( P < 0.05); β1-subunit was not detected in any CCD sample but was present in whole kidney. Indirect immunofluorescence microscopy revealed a predominantly intracellular distribution of α-subunits in LK kidneys. In contrast, robust apical labeling was detected primarily in α-intercalated cells in HK kidneys. In summary, K+ adaptation is associated with an increase in steady-state abundance of maxi-K channel subunit-specific mRNAs and immunodetectable apical α-subunit, the latter observation consistent with redistribution from an intracellular pool to the plasma membrane.

2003 ◽  
Vol 285 (4) ◽  
pp. F629-F639 ◽  
Author(s):  
Craig B. Woda ◽  
Nobuyuki Miyawaki ◽  
Santhanam Ramalakshmi ◽  
Mohan Ramkumar ◽  
Raul Rojas ◽  
...  

High urinary flow rates stimulate K secretion in the fully differentiated but not neonatal or weanling rabbit cortical collecting duct (CCD). Both small-conductance secretory K and high-conductance Ca2+/stretch-activated maxi-K channels have been identified in the apical membrane of the mature CCD by patch-clamp analysis. We reported that flow-stimulated net K secretion in the adult rabbit CCD is 1) blocked by TEA and charybdotoxin, inhibitors of intermediate- and high-conductance (maxi-K) Ca2+-activated K channels, and 2) associated with increases in net Na absorption and intracellular Ca2+ concentration ([Ca2+]i). The present study examined whether the absence of flow-stimulated K secretion early in life is due to a 1) limited flow-induced rise in net Na absorption and/or [Ca2+]i and/or 2) paucity of apical maxi-K channels. An approximately sixfold increase in tubular fluid flow rate in CCDs isolated from 4-wk-old rabbits and microperfused in vitro led to an increase in net Na absorption and [Ca2+]i, similar in magnitude to the response observed in 6-wk-old tubules, but it failed to generate an increase in net K secretion. By 5 wk of age, there was a small, but significant, flow-stimulated rise in net K secretion that increased further by 6 wk of life. Luminal perfusion with iberiotoxin blocked the flow stimulation of net K secretion in the adult CCD, confirming the identity of the maxi-K channel in this response. Maxi-K channel α-subunit message was consistently detected in single CCDs from animals ≥4 wk of age by RT-PCR. Indirect immunofluorescence microscopy using antibodies directed against the α-subunit revealed apical labeling of intercalated cells in cryosections from animals ≥5 wk of age; principal cell labeling was generally intracellular and punctate. We speculate that the postnatal appearance of flow-dependent K secretion is determined by the transcriptional/translational regulation of expression of maxi-K channels. Furthermore, our studies suggest a novel function for intercalated cells in mediating flow-stimulated K secretion.


2008 ◽  
Vol 294 (6) ◽  
pp. F1441-F1447 ◽  
Author(s):  
ZhiJian Wang ◽  
Yuan Wei ◽  
John R. Falck ◽  
Krishnam Raju Atcha ◽  
Wen-Hui Wang

We used the patch-clamp technique to study the effect of arachidonic acid (AA) on basolateral 18-pS K channels in the principal cell of the cortical collecting duct (CCD) of the rat kidney. Application of AA inhibited the 18-pS K channels in a dose-dependent manner and 10 μM AA caused a maximal inhibition. The effect of AA on the 18-pS K channel was specific because application of 11,14,17-eicosatrienoic acid had no effect on channel activity. Also, the inhibitory effect of AA on the 18-pS K channels was abolished by blocking cytochrome P-450 (CYP) epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH) but was not affected by inhibiting CYP ω-hydroxylase or cyclooxygenase. The notion that the inhibitory effect of AA was mediated by CYP epoxygenase-dependent metabolites was further supported by the observation that application of 100 nM 11,12-epoxyeicosatrienoic acid (EET) mimicked the effect of AA and inhibited the basolateral 18-pS K channels. In contrast, addition of either 5,6-, 8,9-, or 14,15-EET failed to inhibit the 18-pS K channels. Moreover, application of 11,12-EET was still able to inhibit the 18-pS K channels in the presence of MS-PPOH. This suggests that 11,12-EET is a mediator for the AA-induced inhibition of the 18-pS K channels. We conclude that AA inhibits basolateral 18-pS K channels by a CYP epoxygenase-dependent pathway and that 11,12-EET is a mediator for the effect of AA on basolateral K channels in the CCD.


1997 ◽  
Vol 273 (4) ◽  
pp. F663-F666 ◽  
Author(s):  
Marcelo Orias ◽  
Heino Velázquez ◽  
Freeman Tung ◽  
George Lee ◽  
Gary V. Desir

The K-selective channel, TOK1, recently identified in yeast, displays the unusual structural feature of having two putative pore regions, in contrast to all previously cloned K channels. Using the TOK1 pore regions as probes, we identified a human kidney cDNA encoding a 337-amino acid protein (hKCNK1) with four transmembrane segments and two pore regions containing the signature sequence of K channels. Amino acid identity to TOK1 is only 15% overall but 40% at the pores. Northern analysis indicates high expression of a 1.9-kb message in brain > kidney >> heart. Nephron segment localization, carried out in rabbit by reverse transcription-polymerase chain reaction, reveals that KCNK1 is expressed in cortical thick ascending limb, connecting tubule, and cortical collecting duct. It was not detected in the proximal tubule, medullary thick ascending limb, distal convoluted tubule, and glomerulus. We conclude that KCNK1 is a unique, double-pore, mammalian K channel, distantly related to the yeast channel TOK1, that is expressed in distal tubule and is a candidate to participate in renal K homeostasis.


2007 ◽  
Vol 293 (1) ◽  
pp. F227-F235 ◽  
Author(s):  
Wen Liu ◽  
Tetsuji Morimoto ◽  
Craig Woda ◽  
Thomas R. Kleyman ◽  
Lisa M. Satlin

Apical low-conductance SK and high-conductance Ca2+-activated BK channels are present in distal nephron, including the cortical collecting duct (CCD). Flow-stimulated net K secretion ( JK) in the CCD is 1) blocked by iberiotoxin, an inhibitor of BK but not SK channels, and 2) associated with an increase in [Ca2+]i, leading us to conclude that BK channels mediate flow-stimulated JK. To examine the Ca2+ dependence and sources of Ca2+ contributing to flow-stimulated JK, JK and net Na absorption ( JNa) were measured at slow (∼1) and fast (∼5 nl·min−1·mm−1) flow rates in rabbit CCDs microperfused in the absence of luminal Ca2+ or after pretreatment with BAPTA-AM to chelate intracellular Ca2+, 2-aminoethoxydiphenyl borate (2-APB), to inhibit the inositol 1,4,5-trisphosphate (IP3) receptor or thapsigargin to deplete internal stores. These treatments, which do not affect flow-stimulated JNa (Morimoto et al. Am J Physiol Renal Physiol 291: F663–F669, 2006), inhibited flow-stimulated JK. Increases in [Ca2+]i stimulate exocytosis. To test whether flow induces exocytic insertion of preformed BK channels into the apical membrane, CCDs were pretreated with 10 μM colchicine (COL) to disrupt microtubule function or 5 μg/ml brefeldin-A (BFA) to inhibit delivery of channels from the intracellular pool to the plasma membrane. Both agents inhibited flow-stimulated JK but not JNa (Morimoto et al. Am J Physiol Renal Physiol 291: F663–F669, 2006), although COL but not BFA also blocked the flow-induced [Ca2+]i transient. We thus speculate that BK channel-mediated, flow-stimulated JK requires an increase in [Ca2+]i due, in part, to luminal Ca2+ entry and ER Ca2+ release, microtubule integrity, and exocytic insertion of preformed channels into the apical membrane.


2005 ◽  
Vol 289 (5) ◽  
pp. F1065-F1071 ◽  
Author(s):  
Yuan Wei ◽  
Elisa Babilonia ◽  
Hyacinth Sterling ◽  
Yan Jin ◽  
Wen-Hui Wang

We used the patch-clamp technique to examine the effect of DOCA treatment (2 mg/kg) on the apical small-conductance K (SK) channels, epithelial Na channels (ENaC), and the basolateral 18-pS K channels in the cortical collecting duct (CCD). Treatment of rats with DOCA for 6 days significantly decreased the plasma K from 3.8 to 3.1 meq and reduced the activity of the SK channel, defined as NPo, from 1.3 in the CCD of control rats to 0.6. In contrast, DOCA treatment significantly increased ENaC activity from 0.01 to 0.53 and the basolateral 18-pS K channel activity from 0.67 to 1.63. Moreover, Western blot analysis revealed that DOCA treatment significantly increased the expression of the nonreceptor type of protein tyrosine kinase (PTK), cSrc, and the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. The possibility that decreases in apical SK channel activity induced by DOCA treatment were the result of stimulation of PTK activity was further supported by experiments in which inhibition of PTK with herbimycin A significantly increased NPo from 0.6 to 2.1 in the CCD from rats receiving DOCA. Also, when rats were fed a high-K (10%) diet, DOCA treatment did not increase the expression of c-Src and decrease the activity of the SK channel in the CCD. We conclude that DOCA treatment decreased the apical SK channel activity in rats on a normal-K diet and that an increase in PTK expression may be responsible for decreased channel activity in the CCD from DOCA-treated rats.


1989 ◽  
Vol 109 (3) ◽  
pp. 1279-1288 ◽  
Author(s):  
L M Satlin ◽  
G J Schwartz

The renal cortical collecting duct (CCD) consists of principal and intercalated cells. Two forms of intercalated cells, those cells involved in H+/HCO3- transport, have recently been described. H+-secreting cells are capable of apical endocytosis and have H+ATPase on the apical membrane and a basolateral Cl-/HCO3- exchanger. HCO3(-)-secreting cells bind peanut agglutinin (PNA) to apical membrane receptors and have diffuse or basolateral distribution of H+ATPase; their Cl-/HCO3- exchanger is on the apical membrane. We found that 20 h after acid feeding of rabbits, there was a fourfold increase in number of cells showing apical endocytosis and a numerically similar reduction of cells binding PNA. Incubation of CCDs at pH 7.1 for 3-5 h in vitro led to similar, albeit less pronounced, changes. Evidence to suggest internalization and degradation of the PNA binding sites included a reduction in apical binding of PNA, decrease in pH in the environment of PNA binding, and incorporation of electron-dense PNA into cytoplasmic vesicles. Such remodeling was dependent on protein synthesis. There was also functional evidence for loss of apical Cl-/HCO3- exchange on PNA-labeled cells. Finally, net HCO3- flux converted from secretion to absorption after incubation at low pH. Thus, exposure of CCDs to low pH stimulates the removal/inactivation of apical Cl-/HCO3- exchangers and the internalization of other apical membrane components. Remodeling of PNA-labeled cells may mediate the change in polarity of HCO3- flux observed in response to acid treatment.


2001 ◽  
Vol 280 (5) ◽  
pp. F786-F793 ◽  
Author(s):  
Craig B. Woda ◽  
Alvina Bragin ◽  
Thomas R. Kleyman ◽  
Lisa M. Satlin

K+ secretion by the cortical collecting duct (CCD) is stimulated at high flow rates. Patch-clamp analysis has identified a small-conductance secretory K+ (SK) and a high-conductance Ca2+-activated K+ (maxi-K) channel in the apical membrane of the CCD. The SK channel, encoded by ROMK, is believed to mediate baseline K+ secretion. The role of the stretch- and Ca2+-activated maxi-K channel is still uncertain. The purpose of this study was to identify the K+ channel mediating flow-dependent K+ secretion in the CCD. Segments isolated from New Zealand White rabbits were microperfused in the absence and presence of luminal tetraethylammonium (TEA) or charybdotoxin, both inhibitors of maxi-K but not SK channels, or apamin, an inhibitor of small-conductance maxi-K+ channels. Net K+ secretion and Na+ absorption were measured at varying flow rates. In the absence of TEA, net K+ secretion increased from 8.3 ± 1.0 to 23.4 ± 4.7 pmol · min−1 · mm−1( P < 0.03) as the tubular flow rate was increased from 0.5 to 6 nl · min−1 · mm−1. Flow stimulation of net K+ secretion was blocked by luminal TEA (8.2 ± 1.2 vs. 9.9 ± 2.7 pmol · min−1 · mm−1 at 0.6 and 6 nl · min−1 · mm−1 flow rates, respectively) or charybdotoxin (6.8 ± 1.6 vs. 8.3 ± 1.6 pmol · min−1 · mm−1 at 1 and 4 nl · min−1 · mm−1 flow rates, respectively) but not by apamin. These results suggest that flow-dependent K+ secretion is mediated by a maxi-K channel, whereas baseline K+ secretion occurs through a TEA- and charybdotoxin-insensitive SK (ROMK) channel.


2002 ◽  
Vol 120 (5) ◽  
pp. 603-615 ◽  
Author(s):  
Ming Lu ◽  
Steven C. Hebert ◽  
Gerhard Giebisch

The small-conductance K+ channel (SK) in the apical membrane of the cortical-collecting duct (CCD) is regulated by adenosine triphosphate (ATP) and phosphorylation-dephosphorylation processes. When expressed in Xenopus oocytes, ROMK, a cloned K+ channel similar to the native SK channel, can be stimulated by phosphatidylinositol bisphosphate (PIP2), which is produced by phosphoinositide kinases from phosphatidylinositol. However, the effects of PIP2 on SK channel activity are not known. In the present study, we investigated the mechanism by which hydrolyzable ATP prevented run-down of SK channel activity in excised apical patches of principal cells from rat CCD. Channel run-down was significantly delayed by pretreatment with hydrolyzable Mg-ATP, but ATPγS and AMP-PNP had no effect. Addition of alkaline phosphatase also resulted in loss of channel activity. After run-down, SK channel activity rapidly increased upon addition of PIP2. Exposure of inside-out patches to phosphoinositide kinase inhibitors (LY294002, quercetin or wortmannin) decreased channel activity by 74% in the presence of Mg-ATP. PIP2 added to excised patches reactivated SK channels in the presence of these phosphoinositide kinase inhibitors. The protein kinase A inhibitor, PKI, reduced channel activity by 36% in the presence of Mg-ATP. PIP2 was also shown to modulate the inhibitory effects of extracellular and cytosolic ATP. We conclude that both ATP-dependent formation of PIP2 through membrane-bound phosphoinositide kinases and phosphorylation of SK by PKA play important roles in modulating SK channel activity.


2000 ◽  
Vol 116 (2) ◽  
pp. 299-310 ◽  
Author(s):  
Ming Lu ◽  
Gordon G. MacGregor ◽  
Wenhui Wang ◽  
Gerhard Giebisch

We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical collecting ducts inhibited SK activity. The inhibition of the channel by ATP was reversible, concentration dependent (Ki = 64 μM), and could be completely prevented by pretreatment with suramin, a specific purinergic receptor (P2) blocker. Ranking of the inhibitory potency of several nucleotides showed strong inhibition by ATP, UTP, and ATP-γ-S, whereas α, β-Me ATP, and 2-Mes ATP failed to affect channel activity. This nucleotide sensitivity is consistent with P2Y2 purinergic receptors mediating the inhibition of SK by ATP. Single channel analysis further demonstrated that the inhibitory effects of ATP could be elicited through activation of apical receptors. Moreover, the observation that fluoride mimicked the inhibitory action of ATP suggests the activation of G proteins during purinergic receptor stimulation. Channel inhibition by ATP was not affected by blocking phospholipase C and protein kinase C. However, whereas cAMP prevented channel blocking by ATP, blocking protein kinase A failed to abolish the inhibitory effects of ATP. The reduction of K channel activity by ATP could be prevented by okadaic acid, an inhibitor of protein phosphatases, and KT5823, an agent that blocks protein kinase G. Moreover, the effect of ATP was mimicked by cGMP and blocked by L-NAME (NG-nitro-l-arginine methyl ester). We conclude that the inhibitory effect of ATP on the apical K channel is mediated by stimulation of P2Y2 receptors and results from increasing dephosphorylation by enhancing PKG-sensitive phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document