scholarly journals Human organic anion transporter 2 is distinct from organic anion transporters 1 and 3 with respect to transport function

2015 ◽  
Vol 309 (10) ◽  
pp. F843-F851 ◽  
Author(s):  
Maja Henjakovic ◽  
Yohannes Hagos ◽  
Wolfgang Krick ◽  
Gerhard Burckhardt ◽  
Birgitta C. Burckhardt

Phylogentically, organic anion transporter (OAT)1 and OAT3 are closely related, whereas OAT2 is more distant. Experiments with human embryonic kidney-293 cells stably transfected with human OAT1, OAT2, or OAT3 were performed to compare selected transport properties. Common to OAT1, OAT2, and OAT3 is their ability to transport cGMP. OAT2 interacted with prostaglandins, and cGMP uptake was inhibited by PGE2 and PGF2α with IC50 values of 40.8 and 12.7 μM, respectively. OAT1 (IC50: 23.7 μM), OAT2 (IC50: 9.5 μM), and OAT3 (IC50: 1.6 μM) were potently inhibited by MK571, an established multidrug resistance protein inhibitor. OAT2-mediated cGMP uptake was not inhibited by short-chain monocarboxylates and, as opposed to OAT1 and OAT3, not by dicarboxylates. Consequently, OAT2 showed no cGMP/glutarate exchange. OAT1 and OAT3 exhibited a pH and a Cl− dependence with higher substrate uptake at acidic pH and lower substrate uptake in the absence of Cl−, respectively. Such pH and Cl− dependencies were not observed with OAT2. Depolarization of membrane potential by high K+ concentrations in the presence of the K+ ionophore valinomycin left cGMP uptake unaffected. In addition to cGMP, OAT2 transported urate and glutamate, but cGMP/glutamate exchange could not be demonstrated. These experiments suggest that OAT2-mediated cGMP uptake does not occur via exchange with monocarboxylates, dicarboxylates, and hydroxyl ions. The counter anion for electroneutral cGMP uptake remains to be identified.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 390 ◽  
Author(s):  
Irina E. Antonescu ◽  
Maria Karlgren ◽  
Maria L. Pedersen ◽  
Ivailo Simoff ◽  
Christel A. S. Bergström ◽  
...  

Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a Km-value of approximately 700 µM. Probenecid inhibited OAT1-mediated acamprosate uptake with a Ki-value of approximately 13 µM, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.


2003 ◽  
Vol 284 (3) ◽  
pp. F503-F509 ◽  
Author(s):  
Birgitta C. Burckhardt ◽  
Stefan Brai ◽  
Sönke Wallis ◽  
Wolfgang Krick ◽  
Natascha A. Wolff ◽  
...  

The H2-receptor antagonist cimetidine is efficiently excreted by the kidneys. In vivo studies indicated an interaction of cimetidine not only with transporters for basolateral uptake of organic cations but also with those involved in excretion of organic anions. We therefore tested cimetidine as a possible substrate of the organic anion transporters cloned from winter flounder (fROAT) and from human kidney (hOAT1). Uptake of [3H]cimetidine into fROAT-expressing Xenopus laevis oocytes exceeded uptake into control oocytes. At −60-mV clamp potential, 1 mM cimetidine induced an inward current, which was smaller than that elicited by 0.1 mM PAH. Cimetidine concentrations exceeding 0.1 mM decreased PAH-induced inward currents, indicating interaction with the same transporter. At pH 6.6, no current was seen with 0.1 mM cimetidine, whereas at pH 8.6 a current was readily detectable, suggesting preferential translocation of uncharged cimetidine by fROAT. Oocytes expressing hOAT1 also showed [3H]cimetidine uptake. These data reveal cimetidine as a substrate for fROAT/hOAT1 and suggest that organic anion transporters contribute to cimetidine excretion in proximal tubules.


2006 ◽  
Vol 290 (2) ◽  
pp. F251-F261 ◽  
Author(s):  
Takashi Sekine ◽  
Hiroki Miyazaki ◽  
Hitoshi Endou

Recent advances in molecular biology have identified three organic anion transporter families: the organic anion transporter (OAT) family encoded by SLC22A, the organic anion transporting peptide (OATP) family encoded by SLC21A ( SLCO), and the multidrug resistance-associated protein (MRP) family encoded by ABCC. These families play critical roles in the transepithelial transport of organic anions in the kidneys as well as in other tissues such as the liver and brain. Among these families, the OAT family plays the central role in renal organic anion transport. Knowledge of these three families at the molecular level, such as substrate selectivity, tissue distribution, and gene localization, is rapidly increasing. In this review, we will give an overview of molecular information on renal organic anion transporters and describe recent topics such as the regulatory mechanisms and molecular physiology of urate transport. We will also discuss the physiological roles of each organic anion transporter in the light of the transepithelial transport of organic anions in the kidneys.


2013 ◽  
Vol 304 (4) ◽  
pp. F403-F409 ◽  
Author(s):  
Yohannes Hagos ◽  
Gerhard Burckhardt ◽  
Birgitta C. Burckhardt

Due to their clearance function, the kidneys are exposed to high concentrations of oxidants and potentially toxic substances. To maintain cellular integrity, renal cells have to be protected by sufficient concentrations of the antioxidant glutathione (GSH). We tested whether GSH or its precursors are taken up by human organic anion transporters 1 (OAT1) and 3 (OAT3) stably expressed in HEK293 cells. GSH did not inhibit uptake of p-aminohippurate (PAH) or of estrone sulfate (ES) in OAT3-transfected HEK293 cells. In OAT1-transfected cells, GSH reduced the uptake of PAH marginally. Among the GSH constituent amino acids, glutamate, cysteine, and glycine, only glutamate inhibited OAT1, but labeled glutamate was not taken up by a probenecid-inhibitable transport system. Thus OAT1 binds glutamate but is unable to translocate it. The GSH precursor dipeptide, cysteinyl glycine (cysgly), and the glutamate derivative N-acetyl glutamate (NAG), inhibited uptake of PAH when present in the medium and trans-stimulated uptake of PAH from the intracellular side, indicating that they are hitherto unrecognized transported substrates of OAT1. N-acetyl aspartate weakly interacted with OAT1, but aspartate did not. NAG inhibited also OAT3, albeit with much lower affinity compared with OAT1, and glutamate did not interact with OAT3 at all. Taken together, human OAT3 and OAT1 cannot be involved in renal GSH extraction from the blood. However, OAT1 could support intracellular GSH synthesis by taking up cysteinyl glycine.


2019 ◽  
Vol 317 (4) ◽  
pp. F805-F814
Author(s):  
Jia Yin ◽  
David J. Wagner ◽  
Bhagwat Prasad ◽  
Nina Isoherranen ◽  
Kenneth E. Thummel ◽  
...  

Hydrochlorothiazide (HCTZ) is the most widely used thiazide diuretic for the treatment of hypertension either alone or in combination with other antihypertensives. HCTZ is mainly cleared by the kidney via tubular secretion, but the underlying molecular mechanisms are unclear. Using cells stably expressing major renal organic anion and cation transporters [human organic anion transporter 1 (hOAT1), human organic anion transporter 3 (hOAT3), human organic cation transporter 2 (hOCT2), human multidrug and toxin extrusion 1 (hMATE1), and human multidrug and toxin extrusion 2-K (hMATE2-K)], we found that HCTZ interacted with both organic cation and anion transporters. Uptake experiments further showed that HCTZ is transported by hOAT1, hOAT3, hOCT2, and hMATE2-K but not by hMATE1. Detailed kinetic analysis coupled with quantification of membrane transporter proteins by targeted proteomics revealed that HCTZ is an excellent substrate for hOAT1 and hOAT3. The apparent affinities ( Km) for hOAT1 and hOAT3 were 112 ± 8 and 134 ± 13 μM, respectively, and the calculated turnover numbers ( kcat) were 2.48 and 0.79 s−1, respectively. On the other hand, hOCT2 and hMATE2-K showed much lower affinity for HCTZ. The calculated transport efficiency ( kcat/ Km) at the single transporter level followed the rank order of hOAT1> hOAT3 > hOCT2 and hMATE2-K, suggesting a major role of organic anion transporters in tubular secretion of HCTZ. In vitro inhibition experiments further suggested that HCTZ is not a clinically relevant inhibitor for hOAT1 or hOAT3. However, strong in vivo inhibitors of hOAT1/3 may alter renal secretion of HCTZ. Together, our study elucidated the molecular mechanisms underlying renal handling of HCTZ and revealed potential pathways involved in the disposition and drug-drug interactions for this important antihypertensive drug in the kidney.


2015 ◽  
Vol 38 (4) ◽  
pp. 582-586 ◽  
Author(s):  
Hiroki Ohya ◽  
Yoshihiko Shibayama ◽  
Jiro Ogura ◽  
Katsuya Narumi ◽  
Masaki Kobayashi ◽  
...  

2012 ◽  
Vol 302 (10) ◽  
pp. F1293-F1299 ◽  
Author(s):  
Volker Vallon ◽  
Satish A. Eraly ◽  
Satish Ramachandra Rao ◽  
Maria Gerasimova ◽  
Michael Rose ◽  
...  

Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 ( Oat1−/−) and OAT3 ( Oat3−/−). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1−/− (−0.03 ± 0.10 μg/min; −3 ± 18%) and Oat3−/− (0.01 ± 0.06 μg/min; −6 ± 19%), with greater variability in Oat1−/−. Expression of OAT3 protein in the renal membranes of Oat1−/− mice was reduced to ∼6% of WT levels, and that of OAT1 in Oat3−/− mice to ∼60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3−/− were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice.


2011 ◽  
Vol 436 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Christian Fork ◽  
Tim Bauer ◽  
Stefan Golz ◽  
Andreas Geerts ◽  
Jessica Weiland ◽  
...  

OAT (organic anion transporter) 2 [human gene symbol SLC22A7 (SLC is solute carrier)] is a member of the SLC22 family of transport proteins. In the rat, the principal site of expression of OAT2 is the sinusoidal membrane domain of hepatocytes. The particular physiological function of OAT2 in liver has been unresolved so far. In the present paper, we have used the strategy of LC (liquid chromatography)–MS difference shading to search for specific and cross-species substrates of OAT2. Heterologous expression of human and rat OAT2 in HEK (human embryonic kidney)-293 cells stimulated accumulation of the zwitterion trigonelline; subsequently, orotic acid was identified as an excellent and specific substrate of OAT2 from the rat (clearance=106 μl·min−1·mg of protein−1) and human (46 μl·min−1·mg of protein−1). The force driving uptake of orotic acid was identified as glutamate antiport. Efficient transport of glutamate by OAT2 was directly demonstrated by uptake of [3H]glutamate. However, because of high intracellular glutamate, OAT2 operates as glutamate efflux transporter. Thus expression of OAT2 markedly increased the release of glutamate (measured by LC-MS) from cells, even without extracellular exchange substrate. Orotic acid strongly trans-stimulated efflux of glutamate. We thus propose that OAT2 physiologically functions as glutamate efflux transporter. OAT2 mRNA was detected, after laser capture microdissection of rat liver slices, equally in periportal and pericentral regions; previous reports of hepatic release of glutamate into blood can now be explained by OAT2 activity. A specific OAT2 inhibitor could, by lowering plasma glutamate and thus promoting brain-to-blood efflux of glutamate, alleviate glutamate exotoxicity in acute brain conditions.


Sign in / Sign up

Export Citation Format

Share Document