SLC26A7: a basolateral Cl-/HCO3- exchanger specific to intercalated cells of the outer medullary collecting duct

2004 ◽  
Vol 286 (1) ◽  
pp. F161-F169 ◽  
Author(s):  
Snezana Petrovic ◽  
Sharon Barone ◽  
Jie Xu ◽  
Laura Conforti ◽  
Liyun Ma ◽  
...  

The outer medullary collecting duct (OMCD) plays an important role in bicarbonate reabsorption and acid-base regulation. An apical V-type H+-ATPase and a basolateral [Formula: see text] exchanger, located in intercalated cells of OMCD, mediate the bicarbonate reabsorption. Here we report the identification of a new basolateral [Formula: see text] exchanger in OMCD intercalated cells in rat kidney. Northern hybridizations demonstrated the predominant expression of this transporter, also known as SLC26A7, in the outer medulla, with lower expression levels in the inner medulla. SLC26A7 was recognized as a ∼90-kDa band in the outer medulla by immunoblot analysis and was localized on the basolateral membrane of a subset of OMCD cells by immunocytochemical staining. No labeling was detected in the cortex. Double-immunofluorescence labeling with the aquaporin-2 and SLC26A7 antibodies or anion exchanger-1 and SLC26A7 antibodies identified the SLC26A7-expressing cells as α-intercalated cells. Functional studies in oocytes demonstrated that increasing the osmolality of the media (to simulate the physiological milieu in the medulla) increased the [Formula: see text] exchanger activity mediated via SLC26A7 by about threefold ( P < 0.02 vs. normal condition). We propose that SLC26A7 is a basolateral [Formula: see text] exchanger in intercalated cells of the OMCD and may play an important role in bicarbonate reabsorption in medullary collecting duct.

2000 ◽  
Vol 279 (5) ◽  
pp. F901-F909 ◽  
Author(s):  
Henrik Vorum ◽  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Brian Simonsen ◽  
Inyeong Choi ◽  
...  

An electroneutral Na-HCO3 − cotransporter (NBCN1) was recently cloned, and Northern blot analyses indicated its expression in rat kidney. In this study, we determined the cellular and subcellular localization of NBCN1 in the rat kidney at the light and electron microscopic level. A peptide-derived antibody was raised against the COOH-terminal amino acids of NBCN1. The affinity-purified antibody specifically recognized one band, ∼180 kDa, in rat kidney membranes. Peptide- N-glycosidase F deglycosylation reduced the band to ∼140 kDa. Immunoblotting of membrane fractions from different kidney regions demonstrated strong signals in the inner stripe of the outer medulla (ISOM), weaker signals in the outer stripe of the outer medulla and inner medulla, and no labeling in cortex. Immunocytochemistry demonstrated that NBCN1 immunolabeling was exclusively observed in the basolateral domains of thick ascending limb (TAL) cells in the outer medulla (strongest in ISOM) but not in the cortex. In addition, collecting duct intercalated cells in the ISOM and in the inner medulla also exhibited NBCN1 immunolabeling. Immunoelectron microscopy demonstrated that NBCN1 labeling was confined to the basolateral plasma membranes of TAL and collecting duct type A intercalated cells. Immunolabeling controls were negative. By using 2,7-bis-carboxyethyl-5,6-caboxyfluorescein, intracellular pH transients were measured in kidney slices from ISOM and from mid-inner medulla. The results revealed DIDS-sensitive, Na- and HCO3 −-dependent net acid extrusion only in the ISOM but not in mid-inner medulla, which is consistent with the immunolocalization of NBCN1. The localization of NBCN1 in medullary TAL cells and medullary collecting duct intercalated cells suggests that NBCN1 may be important for electroneutral basolateral HCO3 − transport in these cells.


1998 ◽  
Vol 9 (5) ◽  
pp. 746-754
Author(s):  
G Obrador ◽  
H Yuan ◽  
T M Shih ◽  
Y H Wang ◽  
M A Shia ◽  
...  

Although the inner medullary collecting duct (IMCD) plays a major role in urinary acidification, the molecular identification of many of the specific components of the transport system in this nephron segment are lacking. A cultured line of rat IMCD cells was used to characterize the mediators of cellular HCO3 exit. This cell line functionally resembles alpha-intercalated cells. Physiologic experiments document that HCO3- transport is a reversible, electroneutral, Cl dependent, Na+-independent process. It can be driven by Cl-gradients and inhibited by stilbenes such as 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid. Immunohistochemical analysis, using a rabbit polyclonal antibody against the carboxy-terminal 12 amino acids of anion exchanger 1 (AE1), revealed a distribution of immunoreactive protein that is consistent with a basolateral localization of AE in cultured cells and in alpha-intercalated cells identified in sections of rat kidney cortex. Immunoblot revealed two immunoreactive bands (approximately 100 and 180 kD in size) in membranes from cultured IMCD cells, rat renal medulla, and freshly isolated IMCD cells. The mobility of the lower molecular weight band was similar to that of AE1 in red blood cell ghosts and kidney homogenate and therefore probably represents AE1. The mobility of the 180-kD band is similar to that for rat stomach and kidney AE2 and therefore probably represents AE2. Selective biotinylation of the apical or basolateral membrane proteins in cultured IMCD cells revealed that both AE1 and AE2 are polarized to the basolateral membrane. Northern blot analysis documented the expression of mRNA for AE1 and AE2 but not AE3. Furthermore, the cDNA sequence of AE1 and AE2 expressed by these cells was found to be virtually identical to that reported for kidney AE1 and rat stomach AE2. It is concluded that this cultured line of rat IMCD cells expresses two members of the anion exchanger gene family, AE1 and AE2, and both of these exchangers probably mediate the electroneutral Cl--dependent HCO3-transport observed in this cell line.


2006 ◽  
Vol 290 (2) ◽  
pp. F397-F408 ◽  
Author(s):  
Ramanathan M. Seshadri ◽  
Janet D. Klein ◽  
Shelley Kozlowski ◽  
Jeff M. Sands ◽  
Young-Hee Kim ◽  
...  

Chronic metabolic acidosis induces dramatic increases in net acid excretion that are predominantly due to increases in urinary ammonia excretion. The current study examines whether this increase is associated with changes in the expression of the renal ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). Chronic metabolic acidosis was induced in Sprague-Dawley rats by HCl ingestion for 1 wk; control animals were pair-fed. After 1 wk, metabolic acidosis had developed, and urinary ammonia excretion increased significantly. Rhcg protein expression was increased in both the outer medulla and the base of the inner medulla. Intercalated cells in the outer medullary collecting duct (OMCD) and in the inner medullary collecting duct (IMCD) in acid-loaded animals protruded into the tubule lumen and had a sharp, discrete band of apical Rhcg immunoreactivity, compared with a flatter cell profile and a broad band of apical immunolabel in control kidneys. In addition, basolateral Rhcg immunoreactivity was observed in both control and acidotic kidneys. Cortical Rhcg protein expression and immunoreactivity were not detectably altered. Rhcg mRNA expression was not significantly altered in the cortex, outer medulla, or inner medulla by chronic metabolic acidosis. Rhbg protein and mRNA expression were unchanged in the cortex, outer and inner medulla, and no changes in Rhbg immunolabel were evident in these regions. We conclude that chronic metabolic acidosis increases Rhcg protein expression in intercalated cells in the OMCD and in the IMCD, where it is likely to mediate an important role in the increased urinary ammonia excretion.


1990 ◽  
Vol 259 (2) ◽  
pp. C286-C294 ◽  
Author(s):  
B. Thorens ◽  
H. F. Lodish ◽  
D. Brown

The localization of two glucose transporter isoforms was mapped in the rat kidney: the high-Michaelis constant (Km; 15-20 mM) low-affinity "liver" transporter and the low-Km (1-2 mM) high-affinity "erythroid/brain" transporter. Both are basolateral membrane proteins, but the liver transporter was present exclusively in the S1 part of the proximal tubule, whereas the erythroid/brain transporter was expressed at variable levels in different nephron segments. Staining intensity was low in the straight proximal tubule (S3), intermediate in the medullary thin and thick ascending limbs, and highest in connecting segments and collecting ducts. In the collecting duct, the erythroid/brain glucose transporter was expressed at the highest level in intercalated cells; less was present in principal cells. In the papilla, only intercalated cells expressed this transporter isoform. These results suggest specific involvements of each transporter isoform in transepithelial glucose reabsorption by different segments of the proximal tubule. They also indicate that while the liver glucose transporter is present in gluconeogenic cells, there is a good correlation between the level of expression of the erythroid/brain glucose transporter and the glycolytic activity of the different nephron segments.


2004 ◽  
Vol 286 (5) ◽  
pp. F903-F912 ◽  
Author(s):  
Jeppe Praetorius ◽  
Young-Hee Kim ◽  
Elena V. Bouzinova ◽  
Sebastian Frische ◽  
Aleksandra Rojek ◽  
...  

Primary cultures of rat inner medullary collecting duct (IMCD) cells Na+ dependently import [Formula: see text] across the basolateral membrane through an undefined transport protein. We used RT-PCR, immunoblotting, and immunohistochemistry to identify candidate proteins for this basolateral [Formula: see text] cotransport. The mRNA encoding the electroneutral [Formula: see text] cotransporter NBCn1 was detected as the only [Formula: see text] cotransporter in the rat inner medulla (IM) among the five characterized Na+-dependent [Formula: see text] transporters. The mRNA of a yet uncharacterized transporter-like protein, BTR1, was also present in the IM, but its expression in microdissected tubules seemed restricted to the thin limbs of Henle's loop. Immunoblotting confirmed the presence of NBCn1 as an ∼180-kDa protein of the rat IM. Anti-NBCn1 immunolabeling was confined to the basolateral plasma membrane domain of IMCD cells in the papillary two-thirds of the IM. Consistent with the presence of NBCn1, IMCD cells possessed stilbene-insensitive, Na+- and [Formula: see text]-dependent pH recovery after acidification, as assessed by fluorescence microscopy using a pH-sensitive intracellular dye. In furosemide-induced alkalotic rats, NBCn1 protein abundance was decreased in both the IM and inner stripe of outer medulla (ISOM) as determined by immunoblotting and immunohistochemistry. In contrast, NBCn1 abundance in the IM and ISOM was unchanged in NaHCO3-loaded animals, and the NBCn1 abundance increased only in the ISOM after NH4Cl loading. In conclusion, NBCn1 is a basolateral [Formula: see text] cotransporter of IMCD cells and is differentially regulated in IMCD and medullary thick ascending limb.


1991 ◽  
Vol 260 (4) ◽  
pp. F506-F517 ◽  
Author(s):  
V. L. Schuster ◽  
G. Fejes-Toth ◽  
A. Naray-Fejes-Toth ◽  
S. Gluck

Two major types of intercalated cells (IC) have been previously defined in rabbit collecting duct: alpha-cells have a basolateral band 3-like anion exchanger and secrete H+, whereas beta-cells bind peanut agglutinin (PNA) apically and are believed to secrete HCO3-. To further define IC types, we double-labeled kidney sections with anti-H(+) -ATPase antibodies and with either an anti-band 3 antibody or PNA. We found four patterns of staining: 1) IC with apical H(+)-ATPase and basal band 3, a configuration consistent with ongoing H+ secretion, which prevailed in the inner stripe of outer medulla (OMCDi); 2) diffuse H(+)-ATPase labeling across the cell and basal band 3, which was most numerous in the outer stripe of outer medulla (OMCDo); 3) IC with "bright" apical peanut lectin, diffuse H(+)-ATPase, and no band 3, which was abundant in the cortical collecting duct (CCD) and probably represents HCO3(-)-secreting cells; and 4) "hybrid" cells with various staining combinations (e.g., apical lectin binding and apical H(+)-ATPase), which although they are uncommon, were seen in the CCD. Consistent with this immunocytochemical finding of hybrid cells, cell-sorting studies on isolated CCD IC showed that 6-18% of PNA-positive cells also stained positively for band 3. We conclude that 1) band 3-positive IC in the OMCD vary axially. Most OMCDi IC are probably active proton secretors, whereas up to one-half of OMCDo IC may be latent H+ secretors. 2) The diffuse H(+)-ATPase pattern in putative beta-cells differs from comparable results in the rat and is not consistent with a "reversed" alpha-cell. HCO3- secretion by beta-cells may be driven by an H+ extrusion mechanism other than the alpha-cell pump re-sorted to the basolateral membrane. 3) The possibility of hybrid cells that might combine alpha- and beta-cell transport proteins suggests a mechanism for functional reversal of collecting duct IC polarity.


2002 ◽  
Vol 13 (4) ◽  
pp. 827-835
Author(s):  
Susan M. Wall ◽  
Michael P. Fischer

ABSTRACT. In rat kidney, the “secretory” isoform of the Na-K-Cl cotransporter, NKCC1 (BSC-2), localizes to the basolateral membrane of the α intercalated cell, the acid secreting cell of the outer medullary collecting duct (OMCD). This laboratory has reported that NKCC1 mediates Cl− uptake across the basolateral membrane in series with Cl− secretion across the apical membrane in rat OMCD. NKCC1 transports NH4+, K+, and Na+ as well as Cl−; therefore, a role for the cotransporter in the process of HCl, NH4Cl, KCl, and NaCl secretion has been suggested. Thus, it was determined if bumetanide, an inhibitor of NKCC1, alters transepithelial cation transport in rat OMCD. OMCD tubules from deoxycorticosterone pivalate (DOCP)–treated rats were perfused in vitro. Hydration of CO2, rather than NH4+, provides the principle source of H+ for net acid secretion. In HCO3−/CO2-buffered solutions, no effect of bumetanide on net K+ flux was detected. Under some conditions, bumetanide addition resulted in a small reduction in secretion of net H+ equivalents. Transepithelial Na+ flux, JNa, was −1.5 ± 1.7 pmol/mm per min, values not different from zero. However, with the application of bumetanide to the bath, JNa was +5.2 ± 1.3 pmol/mm per min (P < 0.05), which indicates net Na+ absorption. In conclusion, inhibition of NKCC1 in rat OMCD changes transepithelial movement of Na+ and Cl−. The role of NKCC1 in the secretion of net H+ equivalents is small.


1993 ◽  
Vol 264 (1) ◽  
pp. F88-F93 ◽  
Author(s):  
H. Furuya ◽  
H. R. Jacobson ◽  
M. D. Breyer

The relationship between Ca2+ and intracellular pH (pHi) was studied in the rabbit collecting duct from the inner stripe of the outer medulla (OMCDi). When bath Ca2+ was lowered [1 mM Ca2+ plus 2 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)] intracellular Ca2+ concentration ([Ca2+]i) decreased by 38.3 +/- 6.2% from 265 +/- 25 to 165 +/- 25 nm (n = 4). Lowering bath Ca2+ produced a biphasic response in pHi, transient acidification (from 6.93 +/- 0.06 to 6.80 +/- 0.06) followed by a return of pHi to levels slightly higher than control (pHi = 6.97 +/- 0.06). The acidification was not blocked by bath amiloride or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or lumen N-ethylmaleimide (NEM). However, bath amiloride significantly reduced the initial rate of pHi recovery after acidification (0.70 pH U/min in control vs. 0.39 pH U/min with amiloride). Lanthanum, a Ca2+ pump inhibitor, completely inhibited the acidification. Moreover, lowering bath temperature to 20 degrees C also inhibited the acidification. Acidification was blocked when the bath pH was raised to 8.0, whereas lowering bath Ca2+ markedly acidified cells when bath pH was lowered to 6.0 (delta pHi = 0.28 +/- 0.01). We also measured the transepithelial (Vt) and basolateral (Vbl) membrane voltages. Lowering bath Ca2+ depolarized Vt and Vbl by 12.7 +/- 4.9 and 6.0 +/- 2.0 mV, respectively. In summary, 1) lowering bath Ca2+ caused a biphasic response in pHi of OMCDi cells, and 2) the acidification phase is due to H+ influx associated with the Ca2+ pump.


2007 ◽  
Vol 293 (4) ◽  
pp. F1308-F1313 ◽  
Author(s):  
Mitsi A. Blount ◽  
Janet D. Klein ◽  
Christopher F. Martin ◽  
Dmitry Tchapyjnikov ◽  
Jeff M. Sands

UT-A1 is regulated by vasopressin and is localized to the apical membrane and intracellular compartment of inner medullary collecting duct (IMCD) cells. UT-A3 is also expressed in the IMCD and is regulated by forskolin in heterologous systems. The goal of the present study is to investigate mechanisms by which vasopressin regulates UT-A3 in rat IMCD. In fresh suspensions of rat IMCD, forskolin increases the phosphorylation of UT-A3, similar to UT-A1. Biotinylation studies indicate that UT-A3 is located in the plasma membrane. Forskolin treatment increases the abundance of UT-A3 in the plasma membrane similar to UT-A1. However, these two transporters do not form a complex through a protein-protein interaction, suggesting that transporter function is unique to each protein. While immunohistochemistry localized UT-A3 to the basal and lateral membranes, a majority of the staining was cytosolic. Immunohistochemistry of vasopressin-treated rat kidney sections also localized UT-A3 primarily to the cytosol with basal and lateral membrane staining but also showed some apical membrane staining in some IMCD cells. This suggests that under normal conditions, UT-A3 functions as the basolateral transporter but in a high cAMP environment, the transporter may move from the cytosol to all plasma membranes to increase urea flux in the IMCD. In summary, this study confirms that UT-A3 is located in the inner medullary tip where it is expressed in the basolateral membrane, shows that UT-A3 is a phosphoprotein in rat IMCD that can be trafficked to the plasma membrane independent of UT-A1, and suggests that vasopressin may induce UT-A3 expression in the apical plasma membrane of IMCD.


1996 ◽  
Vol 7 (12) ◽  
pp. 2533-2542 ◽  
Author(s):  
S M Ginns ◽  
M A Knepper ◽  
C A Ecelbarger ◽  
J Terris ◽  
X He ◽  
...  

Two bumetanide-sensitive ion cotransporters that carry Na+, K+, and Cl- in a coupled fashion have been identified. One type, the "absorptive" isoform, carries these ions across the apical plasma membrane of the thick ascending limb of Henle's loop. Another isoform, the "secretory" cotransporter, has been identified in a number of epithelial tissues by physiological means, but its sites of expression in the kidney have not been fully characterized. Complementary DNA believed to code for the secretory isoform (called "BSC2" or "NKCC1") have recently been cloned. This study used a specific affinity-purified antipeptide antibody to this protein for immunolocalization in the rat kidney. Immunoblot studies using this antibody show abundant immunoreactivity against bands of 140-190 and 120 kd in the parotid gland, colon, and stomach, sites where the secretory form of the cotransporter has been identified by physiological techniques. This distribution supports the hypothesis that this isoform represents the secretory form of the cotransporter. Studies in the kidney revealed that the same bands are associated with membrane fractions chiefly in the outer medulla. Immunolocalizations show that immunoreactivity is selectively and intensely localized to the basolateral plasma membrane of a subfraction of outer medullary collecting duct cells. An independently produced monoclonal antibody (T4) specific for Na-K-Cl cotransporter displays the same localization. Dual localizations of cotransporter antibody with respect to antibody specific for principal cells (aquaporin-2) and intercalated cells (band 3 and H(+)-ATPase) show that cotransporter immunoreactivity is localized to alpha-intercalated cells of the outer medullary collecting duct in the rat. This distinctive localization suggests that the secretory form of the cotransporter may play a role in renal NH4+ and/or acid secretion by this cell type.


Sign in / Sign up

Export Citation Format

Share Document