outer stripe
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 1)

H-INDEX

22
(FIVE YEARS 0)

Author(s):  
Caroline Prot-Bertoye ◽  
Camille Griveau ◽  
Karsten Skjødt ◽  
Lydie Cheval ◽  
Gaëlle Brideau ◽  
...  

Functional properties of the paracellular pathway depend critically on the set of claudins expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: HELIX syndrome caused by genetic variations in the CLDN10 gene, and Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis caused by genetic variations in the CLDN16 or the CLDN19 gene. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, 16 and 19 in both paraffin-embedded and frozen kidney sections from adult human, mouse and rat, using immunohistochemistry and immunofluorescence, respectively. Here CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junction in human and rodent kidney. A weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidney. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junction almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidney.


2018 ◽  
Vol 315 (3) ◽  
pp. F417-F428 ◽  
Author(s):  
Lijuan Fang ◽  
Hyun-Wook Lee ◽  
Chao Chen ◽  
Autumn N. Harris ◽  
Michael F. Romero ◽  
...  

Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study’s purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.


2017 ◽  
Vol 36 (5) ◽  
pp. 386-394 ◽  
Author(s):  
Jing Ying Ma ◽  
Sandra Snook ◽  
Sheryl Garrovillo ◽  
Charles Johnson ◽  
David La

Immunohistochemical staining for the lysosome-associated membrane protein 2 (LAMP-2) has been proposed previously as an alternative to electron microscopy to identify hepatic phospholipidosis. This study used LAMP-2 immunohistochemistry (IHC) to diagnose phospholipidosis in rats exhibiting renal tubular injury. Rats were administered toreforant, a histamine H4 receptor antagonist by oral gavage at a dose of 3, 10, or 100 mg/kg/d for 6 months. Hematoxylin and eosin staining revealed renal tubular epithelial cell vacuolation, hypertrophy, degeneration, and luminal dilation in the 100 mg/kg/d group animals. Renal tubular injury was confirmed using kidney injury marker 1 (KIM-1) IHC. The involvement of phosopholipidosis in the renal injury was investigated by LAMP-2. Adipophilin IHC was included to differentiate phospholipidosis from lipidosis. Increased LAMP-2 staining was observed in the 100 mg/kg/d group animals when compared to vehicle group animals. Lysosome-associated membrane protein-2 staining was most prominent in the outer stripe of the outer medulla where KIM-1 staining was also most prominent. By contrast, adipophilin staining was not increased. Phospholipidosis was also confirmed by electron microscopy. These data support the use of LAMP-2 IHC as a diagnostic tool and suggest an association between phospholipidosis and the renal tubular injury caused by toreforant.


2016 ◽  
Vol 311 (1) ◽  
pp. F227-F238 ◽  
Author(s):  
Davorka Breljak ◽  
Marija Ljubojević ◽  
Yohannes Hagos ◽  
Vedran Micek ◽  
Daniela Balen Eror ◽  
...  

The initial step in renal secretion of organic anions (OAs) is mediated by transporters in the basolateral membrane (BLM). Contributors to this process are primary active Na+-K+-ATPase (EC 3.6.3.9), secondary active Na+-dicarboxylate cotransporter 3 (NaDC3/SLC13A3), and tertiary active OA transporters (OATs) OAT1/SLC22A6, OAT2/SLC22A7, and OAT3/SLC22A8. In human kidneys, we analyzed the localization of these transporters by immunochemical methods in tissue cryosections and isolated membranes. The specificity of antibodies was validated with human embryonic kidney-293 cells stably transfected with functional OATs. Na+-K+-ATPase was immunolocalized to the BLM along the entire human nephron. NaDC3-related immunostaining was detected in the BLM of proximal tubules and in the BLM and/or luminal membrane of principal cells in connecting segments and collecting ducts. The thin and thick ascending limbs, macula densa, and distal tubules exhibited no reactivity with the anti-NaDC3 antibody. OAT1–OAT3-related immunostaining in human kidneys was detected only in the BLM of cortical proximal tubules; all three OATs were stained more intensely in S1/S2 segments compared with S3 segment in medullary rays, whereas the S3 segment in the outer stripe remained unstained. Expression of NaDC3, OAT1, OAT2, and OAT3 proteins exhibited considerable interindividual variability in both male and female kidneys, and sex differences in their expression could not be detected. Our experiments provide a side-by-side comparison of basolateral transporters cooperating in renal OA secretion in the human kidney.


2015 ◽  
Vol 309 (5) ◽  
pp. F464-F473 ◽  
Author(s):  
Jeffrey M. Purkerson ◽  
Andrew L. Schwaderer ◽  
Aya Nakamori ◽  
George J. Schwartz

During metabolic acidosis, the cortical collecting duct (CCD) of the rabbit reverses the polarity of bicarbonate flux from net secretion to net absorption, and this is accomplished by increasing the proton secretory rate by α-intercalated cells (ICs) and decreasing bicarbonate secretion by β-ICs. To better characterize dynamic changes in H+-secreting α-ICs, we examined their morphology in collecting ducts microdissected from kidneys of normal, acidotic, and recovering rabbits. α-ICs in defined axial regions varied in number and basolateral anion exchanger (AE)1 morphology, which likely reflects their relative activity and function along the collecting duct. Upon transition from CCD to outer medullary collecting duct from the outer stripe to the inner stripe, the number of α-ICs increases from 11.0 ± 1.2 to 15.4 ± 1.11 and to 32.0 ± 1.3 cells/200 μm, respectively. In the CCD, the basolateral structure defined by AE1 typically exhibited a pyramidal or conical shape, whereas in the medulla the morphology was elongated and shallow, resulting in a more rectangular shape. Furthermore, acidosis reversibly induced α-ICs in the CCD to acquire a more rectangular morphology concomitant with a transition from diffusely cytoplasmic to increased basolateral surface distribution of AE1 and apical polarization of B1-V-ATPase. The latter results are consistent with the supposition that morphological adaptation from the pyramidal to rectangular shape reflects a transition toward a more “active” configuration. In addition, α-ICs in the outer medullary collecting duct from the outer stripe exhibited cellular morphology strikingly similar to dendritic cells that may reflect a newly defined ancillary function in immune defense of the kidney.


2014 ◽  
Vol 21 (4) ◽  
pp. 795-800 ◽  
Author(s):  
Ryota Shirai ◽  
Takuya Kunii ◽  
Akio Yoneyama ◽  
Takahito Ooizumi ◽  
Hiroko Maruyama ◽  
...  

Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7–3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.


2014 ◽  
Vol 306 (6) ◽  
pp. F664-F671 ◽  
Author(s):  
Erik I. Christensen ◽  
Birgitte Grann ◽  
Inger B. Kristoffersen ◽  
Elisabeth Skriver ◽  
Jesper S. Thomsen ◽  
...  

This study gives a three-dimensional (3D) structural analysis of rat nephrons and their connections to collecting ducts. Approximately 4,500 2.5-μm-thick serial sections from the renal surface to the papillary tip were obtained from each of 3 kidneys of Wistar rats. Digital images were recorded and aligned into three image stacks and traced from image to image. Short-loop nephrons (SLNs), long-loop nephrons (LLNs), and collecting ducts (CDs) were reconstructed in 3D. We identified a well-defined boundary between the outer stripe and the inner stripe of the outer medulla corresponding to the transition of descending thick limbs to descending thin limbs and between the inner stripe and the inner medulla, i.e., the transition of ascending thin limbs into ascending thick limbs of LLNs. In all nephrons, a mosaic pattern of proximal tubule (PT) cells and descending thin limb (DTL) cells was observed at the transition between the PT and the DTL. The course of the LLNs revealed tortuous proximal “straight” tubules and winding of the DTLs within the outer half of the inner stripe. The localization of loop bends of SLNs in the inner stripe of the outer medulla and the bends of LLNs in the inner medulla reflected the localization of their glomeruli; i.e., the deeper the glomerulus, the deeper the bend. Each CD drained approximately three to six nephrons with a different pattern than previously established in mice. This information will provide a basis for evaluation of structural changes within nephrons as a result of physiological or pharmaceutical intervention.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e26961 ◽  
Author(s):  
Christina T. Teng ◽  
Yin Li ◽  
Pat Stockton ◽  
Julie Foley

2010 ◽  
Vol 299 (3) ◽  
pp. F634-F647 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

In a companion study (Edwards A and Layton AT. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00680.2009), we developed a mathematical model of nitric oxide (NO), superoxide (O2−), and total peroxynitrite (ONOO) transport in mid-outer stripe and mid-inner stripe cross sections of the rat outer medulla (OM). We examined how the three-dimensional architecture of the rat OM, together with low medullary oxygen tension (Po2), affects the distribution of NO, O2−, and ONOO in the rat OM. In the current study, we sought to determine generation rate and permeability values that are compatible with measurements of medullary NO concentrations and to assess the importance of tubulovascular cross talk and NO-O2− interactions under physiological conditions. Our results suggest that the main determinants of NO concentrations in the rat OM are the rate of vascular and tubular NO synthesis under hypoxic conditions, and the red blood cell (RBC) permeability to NO ( PNORBC). The lower the PNORBC, the lower the amount of NO that is scavenged by hemoglobin species, and the higher the extra-erythrocyte NO concentrations. In addition, our results indicate that basal endothelial NO production acts to significantly limit NaCl reabsorption across medullary thick ascending limbs and to sustain medullary perfusion, whereas basal epithelial NO production has a smaller impact on NaCl transport and a negligible effect on vascular tone. Our model also predicts that O2− consumption by NO significantly reduces medullary O2− concentrations, but that O2− , when present at subnanomolar concentrations, has a small impact on medullary NO bioavailability.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
David Vansthertem ◽  
Annabel Gossiaux ◽  
Anne-Emilie Declèves ◽  
Nathalie Caron ◽  
Denis Nonclercq ◽  
...  

This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes) during regeneration of S3 tubules of outer stripe of outer medulla (OSOM). Groups of experimental animals (n=4) were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2′-deoxyuridine (BrdU) and Proliferating Cell Nuclear Antigen (PCNA) labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM) positive interstitial cells increased transiently (18–72 hours) in the vicinity of altered tubules. We have also localized a small population ofα-Smooth Muscle Actin (SMA)-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document