Functional roles of cationic amino acid residues in the sodium-dicarboxylate cotransporter 3 (NaDC-3) from winter flounder

2006 ◽  
Vol 291 (6) ◽  
pp. F1224-F1231 ◽  
Author(s):  
Yohannes Hagos ◽  
Jürgen Steffgen ◽  
Ahsan N. Rizwan ◽  
Denis Langheit ◽  
Ariane Knoll ◽  
...  

In the present study, we determined the functional role of 15 positively charged amino acid residues at or within 1 of the predicted 11 transmembrane helixes of the flounder renal sodium-dicarboxylate cotransporter fNaDC-3. Using site-directed mutagenesis, histidine (H), lysine (K), and arginine (R) residues of fNaDC-3 were replaced by alanine (A), isoleucine (I), or leucine (L). Most mutants showed sodium-dependent, lithium-inhibitable [14C]succinate uptake and, in two-electrode voltage-clamp (TEVC) experiments, Km and Δ Imax values comparable to wild-type (WT) fNaDC-3. The replacement of R109 and R110 by alanine and isoleucine (RR109/110AI) prevented the expression of fNaDC-3 at the plasma membrane. When the lysines at positions 232 and 235 were replaced by isoleucine (KK232/235II), the transporter was expressed but showed small transport rates and succinate-induced currents. K114I, located within transmembrane helix 4, showed [14C]succinate uptake similar to WT but relatively small inward currents. When K114 was replaced by arginine, glutamic acid (E), or glutamine (Q), all mutants were expressed at the cell surface. In [14C]succinate uptake and TEVC experiments performed simultaneously on the same oocytes, uptake was similar to or higher than WT, whereas succinate-induced currents were either comparable (K114R) to, or considerably smaller (K114E, K114I, K114Q) than, those evoked by WT. These results suggest that a positively charged residue at position 114 is required for electrogenic sodium-dicarboxylate cotransport.

2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


Biochemistry ◽  
1999 ◽  
Vol 38 (24) ◽  
pp. 7847-7855 ◽  
Author(s):  
Julie A. Rosenthal ◽  
Mark M. Levandoski ◽  
Belle Chang ◽  
Jerald F. Potts ◽  
Qing-Luo Shi ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6940
Author(s):  
Francisco Andrés Peralta ◽  
J. Pablo Huidobro-Toro

P2 × 4R is allosterically modulated by Zn(II), and despite the efforts to understand the mechanism, there is not a consensus proposal; C132 is a critical amino acid for the Zn(II) modulation, and this residue is located in the receptor head domain, forming disulfide SS3. To ascertain the role of the SS2/SS3 microenvironment on the rP2 × 4R Zn(II)-induced allosteric modulation, we investigated the contribution of each individual SS2/SS3 cysteine plus carboxylic acid residues E118, E160, and D170, located in the immediate vicinity of the SS2/SS3 disulfide bonds. To this aim, we combined electrophysiological recordings with protein chemical alkylation using thiol reagents such as N-ethylmaleimide or iodoacetamide, and a mutation of key amino acid residues together with P2 × 4 receptor bioinformatics. P2 × 4R alkylation in the presence of the metal obliterated the allosteric modulation, a finding supported by the site-directed mutagenesis of C132 and C149 by a corresponding alanine. In addition, while E118Q was sensitive to Zn(II) modulation, the wild type receptor, mutants E160Q and D170N, were not, suggesting that these acid residues participate in the modulatory mechanism. Poisson–Boltzmann analysis indicated that the E160Q and D170N mutants showed a shift towards more positive electrostatic potential in the SS2/SS3 microenvironment. Present results highlight the role of C132 and C149 as putative Zn(II) ligands; in addition, we infer that acid residues E160 and D170 play a role attracting Zn(II) to the head receptor domain.


Sign in / Sign up

Export Citation Format

Share Document