Functional analysis and molecular model of the human urate transporter/channel, hUAT

2002 ◽  
Vol 283 (1) ◽  
pp. F150-F163 ◽  
Author(s):  
Edgar Leal-Pinto ◽  
B. Eleazar Cohen ◽  
Michael S. Lipkowitz ◽  
Ruth G. Abramson

Recombinant protein, designated hUAT, the human homologue of the rat urate transporter/channel (UAT), functions as a highly selective urate channel in lipid bilayers. Functional analysis indicates that hUAT activity, like UAT, is selectively blocked by oxonate from its cytosolic side, whereas pyrazinoate and adenosine selectively block from the channel's extracellular face. Importantly, hUAT is a galectin, a protein with two β-galactoside binding domains that bind lactose. Lactose significantly increased hUAT open probability but only when added to the channel's extracellular side. This effect on open probability was mimicked by glucose, but not ribose, suggesting a role for extracellular glucose in regulating hUAT channel activity. These functional observations support a four-transmembrane-domain structural model of hUAT, as previously predicted from the primary structure of UAT. hUAT and UAT, however, are not functionally identical: hUAT has a significantly lower single-channel conductance and open probability is voltage independent. These differences suggest that evolutionary changes in specific amino acids in these highly homologous proteins are functionally relevant in defining these biophysical properties.

1997 ◽  
Vol 273 (2) ◽  
pp. H796-H804 ◽  
Author(s):  
C. Valdivia ◽  
J. O. Hegge ◽  
R. D. Lasley ◽  
H. H. Valdivia ◽  
R. Mentzer

We investigated the effects of myocardial stunning on the function of the two main Ca2+ transport proteins of the sarcoplasmic reticulum (SR), the Ca(2+)-adenosinetriphosphatase and the Ca(2+)-release channel or ryanodine receptor. Regional myocardial stunning was induced in open-chest pigs (n = 6) by a 10-min occlusion of the left anterior descending coronary artery (LAD) and 2 h reperfusion. SR vesicles isolated from the LAD-perfused region (stunned) and the normal left circumflex coronary artery (LC)-perfused region were used to assess the oxalate-supported 45Ca2+ uptake, [3H]ryanodine binding, and single-channel recordings of ryanodine-sensitive Ca(2+)-release channels in planar lipid bilayers. Myocardial stunning decreased LAD systolic wall thickening to 20% of preischemic values. The rate of SR 45Ca2+ uptake in the stunned LAD bed was reduced by 37% compared with that of the normal LC bed (P < 0.05). Stunning was also associated with a 38% reduction in the maximal density of high-affinity [3H]ryanodine binding sites (P < 0.05 vs. normal LC) but had no effect on the dissociation constant. The open probability of ryanodine-sensitive Ca(2+)-release channels determined by single channel recordings in planar lipid bilayers was 26 +/- 2% for control SR (n = 33 channels from 3 animals) and 14 +/- 2% for stunned SR (n = 21 channels; P < 0.05). This depressed activity of SR function observed in postischemic myocardium could be one of the mechanisms underlying myocardial stunning.


1989 ◽  
Vol 256 (4) ◽  
pp. C902-C912 ◽  
Author(s):  
R. J. Bridges ◽  
R. T. Worrell ◽  
R. A. Frizzell ◽  
D. J. Benos

We studied blockade by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) of a secretory Cl- channel from colonic enterocyte plasma membrane vesicles incorporated into planar lipid bilayer membranes. Except for intermittent long-lived closed periods (100 ms to several min), the control channel open probability (Po) was greater than 90%. DNDS, added to the cis or vesicle-containing side, which corresponds to the outer membrane side of the channel, caused a dramatic increase in the number of current transitions from the open-to-closed state. DNDS caused a concentration-dependent decrease in Po with a maximum inhibition of 95 +/- 2.0% and a half-maximal inhibitory concentration of 3.3 +/- 1.4 microM. DNDS added to the trans side of the channel had no effect on either the single-channel conductance or kinetic behavior of the channel. Kinetic analysis revealed that DNDS blockade from the cis side could be explained by a linear, closed-open-blocked, kinetic scheme. The estimated DNDS block rate constants were kon = 3.2 X 10(7) M-1.s-1 and koff = 52 s-1, yielding an equilibrium dissociation constant (KD) of 2.1 +/- 0.38 microM, similar to the Ki for inhibition of Po. The effects of DNDS were fully reversible after perfusion of the cis compartment with DNDS-free solution. In contrast, the covalently reactive 4,4'-diisothiocyano-substituted stilbene disulfonate caused an irreversible blockade of the Cl- channel.


2007 ◽  
Vol 293 (1) ◽  
pp. F236-F244 ◽  
Author(s):  
Ling Yu ◽  
Douglas C. Eaton ◽  
My N. Helms

To better understand how renal Na+ reabsorption is altered by heavy metal poisoning, we examined the effects of several divalent heavy metal ions (Zn2+, Ni2+, Cu2+, Pb2+, Cd2+, and Hg2+) on the activity of single epithelial Na+ channels (ENaC) in a renal epithelial cell line (A6). None of the cations changed the single-channel conductance. However, ENaC activity [measured as the number of channels ( N) × open probability ( Po)] was decreased by Cd2+ and Hg2+ and increased by Cu2+, Zn2+, and Ni2+ but was not changed by Pb2+. Of the cations that induced an increase in Na+ channel function, Zn2+ increased N, Ni2+ increased Po, and Cu2+ increased both. The cysteine modification reagent [2-(trimethylammonium)ethyl]methanethiosulfonate bromide also increased N, whereas diethylpyrocarbonate, which covalently modifies histidine residues, affected neither Po nor N. Cu2+ increased N and stimulated Po by reducing Na+ self-inhibition. Furthermore, we observed that ENaC activity is slightly voltage dependent and that the voltage dependence of ENaC is insensitive to extracellular Na+ concentration; however, apical application of Ni2+ or diethylpyrocarbonate reduced the channel voltage dependence. Thus the voltage sensor of Xenopus ENaC is different from that of typical voltage-gated channels, since voltage appears to be sensed by histidine residues in the extracellular loops of ENaC, rather than by charged amino acids in a transmembrane domain.


1990 ◽  
Vol 95 (5) ◽  
pp. 981-1005 ◽  
Author(s):  
R H Ashley ◽  
A J Williams

Single Ca2+ release channels from vesicles of sheep cardiac junctional sarcoplasmic reticulum have been incorporated into uncharged planar lipid bilayers. Single-channel currents were recorded from Ca2(+)-activated channels that had a Ca2+ conductance of approximately 90 pS. Channel open probability increased sublinearly as the concentration of free Ca2+ was raised at the myoplasmic face, and without additional agonists the channels could not be fully activated even by 100 microM free Ca2+. Lifetime analysis revealed a minimum of two open and three closed states, and indicates that Ca2+ activated the channels by interacting with at least one of the closed states to increase the rate of channel opening. Correlations between adjacent lifetimes suggested there were at least two pathways between the open- and closed-state aggregates. An analysis of bursting behavior also revealed correlations between successive burst lengths and the number of openings per burst. The latter had two geometric components, providing additional evidence for at least two open states. One component appeared to comprise unit bursts, and the lifetime of most of these fell within the dominant shorter open-time distribution associated with over 90% of all openings. A cyclic gating scheme is proposed, with channel activation regulated by the binding of Ca2+ to a closed conformation of the channel protein. Mg2+ may inhibit activation by competing for this binding site, but lifetime and fluctuation analysis suggested that once activated the channels continue to gate normally.


1992 ◽  
Vol 262 (3) ◽  
pp. L327-L336 ◽  
Author(s):  
D. Savaria ◽  
C. Lanoue ◽  
A. Cadieux ◽  
E. Rousseau

Microsomal fractions were prepared from canine and bovine airway smooth muscle (ASM) by differential and gradient centrifugations. Surface membrane vesicles were characterized by binding assays and incorporated into planar lipid bilayers. Single-channel activities were recorded in symmetric or asymmetric K+ buffer systems and studied under voltage and Ca2+ clamp conditions. A large-conductance K(+)-selective channel (greater than 220 pS in 150 mM K+) displaying a high Ca2+, low Ba2+, and charybdotoxin (CTX) sensitivity was identified. Time analysis of single-channel recordings revealed a complex kinetic behavior compatible with the previous schemes proposed for Ca(2+)-activated K+ channels in a variety of biological surface membranes. We now report that the open probability of the channel at low Ca2+ concentration is enhanced on in vitro phosphorylation, which is mediated via an adenosine 3',5'-cyclic monophosphate-dependent protein kinase. In addition to this characterization at the molecular level, a second series of pharmacological experiments were designed to assess the putative role of this channel in ASM strips. Our results show that 50 nM CTX, a specific inhibitor of the large conducting Ca(2+)-dependent K+ channel, prevents norepinephrine transient relaxation on carbamylcholine-precontracted ASM strips. It was also shown that CTX reversed the steady-state relaxation induced by vasoactive intestinal peptide and partially antagonized further relaxation induced by cumulative doses of this potent bronchodilatator. Thus it is proposed that the Ca(2+)-activated K+ channels have a physiological role because they are indirectly activated on stimulation of various membrane receptors via intracellular mechanisms.


2000 ◽  
Vol 279 (4) ◽  
pp. C1107-C1115 ◽  
Author(s):  
F. S. Walters ◽  
M. Covarrubias ◽  
J. S. Ellingson

We investigated the effects of clinically relevant ethanol concentrations (5–20 mM) on the single-channel kinetics of bovine aortic smooth muscle maxi-K channels reconstituted in lipid bilayers (1:1 palmitoyl-oleoyl-phosphatidylethanolamine: palmitoyl-oleoyl-phosphatidylcholine). Ethanol at 10 and 20 mM decreased the channel open probability ( P o) by 75 ± 20.3% mainly by increasing the mean closed time (+82 to +960%, n = 7). In some instances, ethanol also decreased the mean open time (−40.8 ± 22.5%). The P o-voltage relation in the presence of 20 mM ethanol exhibited a rightward shift in the midpoint of voltage activation (Δ V ½ ≅ 17 mV), a slightly steeper relationship (change in slope factor, Δ k, ≅ −2.5 mV), and a decreased maximum P o (from ∼0.82 to ∼0.47). Interestingly, channels inhibited by ethanol at low Ca2+ concentrations (2.5 μM) were very resistant to ethanol in the presence of increased Ca2+ (≥ 20 μM). Alcohol consumption in clinically relevant amounts may alter the contribution of maxi-K channels to the regulation of arterial tone.


1997 ◽  
Vol 272 (2) ◽  
pp. C622-C627 ◽  
Author(s):  
T. Oba ◽  
M. Koshita ◽  
M. Yamaguchi

When sarcoplasmic reticulum (SR) vesicles prepared from frog skeletal muscles were actively loaded with Ca2+, pretreatment of the SR with 2.2 mM (0.01%) ethanol for 30 s significantly potentiated 5 mM caffeine-induced release of Ca2+ from 16.7 +/- 3.7 nmol/mg protein in control without ethanol to 28.0 +/- 2.6 nmol/mg (P < 0.05, n = 5). Ethanol alone caused no release of Ca2+ from the SR. Exposure of the Ca2+-release channel, incorporated into planar lipid bilayers, to 2 mM caffeine significantly increased open probability (Po) and mean open time, but unitary conductance was not affected. Ethanol (2.2 mM) enhanced caffeine-induced Ca2+-release channel activity, with Po reaching 3.02-fold and mean open time 2.85-fold the values in the absence of ethanol. However, ethanol alone did not affect electrical parameters of single-channel current, over a concentration range of 2.2 mM (0.01%) to 217 mM (1%). The synergistic action of ethanol and caffeine on the channel activity could be attributable to enhancement of caffeine-induced release of Ca2+ from the SR vesicles in the presence of ethanol.


1994 ◽  
Vol 266 (3) ◽  
pp. C741-C750 ◽  
Author(s):  
W. B. Reeves ◽  
R. W. Gurich

Ion channels in endosomal membranes from rabbit kidney cortex were studied after reconstitution into planar lipid bilayers. The most frequently observed ion channel was anion selective (PCl/PK = 13) and had a single-channel conductance of 116 pS when the cis and trans solutions contained 410 and 150 mM KCl, respectively, and a conductance of 90 pS in symmetrical 150 mM KCl solutions. The anion selectivity sequence of the channel was NO3- > F- > Br- > Cl- >> I-. The activity of the channel was voltage dependent such that hyperpolarization of the cis, or cytoplasmic, surface of the channel increased the open probability (Po). The activity of the channel was also highly dependent on the calcium activity of the cis but not the trans solution. Channels were fully active (Po > 0.7) at Ca2+ concentration > 1 microM, but channel activity was completely absent (Po < 0.001) at Ca2+ concentration < 250 nM. The effects of calcium on Po were not voltage dependent. The Cl(-)-channel blocker 2-[(2-cyclopentyl-6,7-dichloro-2,3-dihydro-2-methyl-1-oxo-1H-inden -5- yl)oxy]-acetic acid (IAA-94/95) produced a concentration-dependent reversible flickering block of the endosomal channel with a Ki of 15 microM. 4,4'-Dinitrostilbene-2,2'-disulfonic acid, a disulfonic stilbene, also produced a flickering block of the channel with a Ki of approximately 5 microM. Because endosomal Cl- channels are believed to facilitate endosomal acidification, we tested the effects of IAA-94/95 and deletion of Ca2+ on the rate of acidification of intact endosomes. Because neither maneuver affected acidification, we conclude that the 116-pS channel does not participate in endosomal acidification. This channel may be involved in other endosomal processes, e.g., cell volume regulation and control of membrane trafficking.


1990 ◽  
Vol 96 (2) ◽  
pp. 373-394 ◽  
Author(s):  
L Toro ◽  
J Ramos-Franco ◽  
E Stefani

The regulation of calcium-activated K (KCa) channels by a G protein-mediated mechanism was studied. KCa channels were reconstituted in planar lipid bilayers by fusion of membrane vesicles from rat or pig myometrium. The regulatory process was studied by exploring the actions of GTP and GTP gamma S on single channel activity. KCa channels had a conductance of 260 +/- 6 pS (n = 25, +/- SE, 250/50 mM KCl gradient) and were voltage dependent. The open probability (Po) vs. voltage relationships were well fit by a Boltzmann distribution. The slope factor (11 mV) was insensitive to internal Ca2+. The half activation potential (V1/2) was shifted -70 mV by raising internal Ca2+ from pCa 6.2 to pCa 4. Addition of GTP or GTP gamma S activated channel activity only in the presence of Mg2+, a characteristic typical of G protein-mediated mechanisms. The Po increased from 0.18 +/- 0.08 to 0.49 +/- 0.07 (n = 7, 0 mV, pCa 6 to 6.8). The channel was also activated (Po increased from 0.03 to 0.37) in the presence of AMP-PNP, a nonphosphorylating ATP analogue, suggesting a direct G protein gating of KCa channels. Upon nucleotide activation, mean open time increased by a factor of 2.7 +/- 0.7 and mean closed time decreased by 0.2 +/- 0.07 of their initial values (n = 6). Norepinephrine (NE) or isoproterenol potentiated the GTP-mediated activation of KCa channels (Po increased from 0.17 +/- 0.06 to 0.35 +/- 0.07, n = 10). These results suggest that myometrium possesses beta-adrenergic receptors coupled to a GTP-dependent protein that can directly gate KCa channels. Furthermore, KCa channels, beta-adrenergic receptors, and G proteins can be reconstituted in lipid bilayers as a stable, functionally coupled, molecular complex.


1986 ◽  
Vol 88 (5) ◽  
pp. 573-588 ◽  
Author(s):  
J S Smith ◽  
R Coronado ◽  
G Meissner

A high-conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy-density skeletal muscle sarcoplasmic reticulum (SR) fractions into planar lipid bilayers of the Mueller-Rudin type. cis Ca2+ in the range of 2-950 microM increased open probability (Po) in single channel records without affecting open event lifetimes. Millimolar ATP was found to be as good as or better than Ca2+ in activation; however, both Ca2+ and ATP were required to fully activate the channel, i.e., to bring Po = 1. Exponential fits to open and closed single channel lifetimes suggested that the channel may exist in many distinct states. Two open and two closed states were identified when the channel was activated by either Ca2+ or ATP alone or by Ca2+ plus nucleotide. Mg2+ was found to permeate the SR Ca channel in a trans-to-cis direction such that iMg2+/iCa2+ = 0.40. cis Mg2+ was inhibitory and in single channel recordings produced an unresolvable flickering of Ca- and nucleotide-activated channels. At nanomolar cis Ca2+, 4 microM Mg2+ completely inhibited nucleotide-activated channels. In the presence of 2 microM cis Ca2+, the nucleotide-activated macroscopic Ba conductance was inhibited by cis Mg2+ with an IC50 equal to 1.5 mM.


Sign in / Sign up

Export Citation Format

Share Document