Ischemia-reperfusion induces G-CSF gene expression by renal medullary thick ascending limb cells in vivo and in vitro

2004 ◽  
Vol 286 (6) ◽  
pp. F1193-F1201 ◽  
Author(s):  
Ying Zhang ◽  
Vanessa K. Woodward ◽  
John M. Shelton ◽  
James A. Richardson ◽  
Xin J. Zhou ◽  
...  

Ischemic acute renal failure involves not only the kidney but also extrarenal organs such as the bone marrow that produces inflammatory cells. By ELISA and RNase protection assays, we now show that renal ischemia-reperfusion increases serum concentrations of granulocyte macrophage colony-stimulating factor (G-CSF) protein and increases both G-CSF mRNA and protein in the ischemic kidney. In situ hybridization localized the increased G-CSF mRNA to tubule cells, including medullary thick ascending limb cells (mTAL), in the outer medulla. We also show that mTAL produce G-CSF protein and increase G-CSF mRNA after stimulation by reactive oxygen species in vitro. The production of G-CSF by the kidney after ischemia-reperfusion provides a means of communication from the injured kidney to the bone marrow. This supports the known inflammatory response to ischemia.

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1473-1480
Author(s):  
AM Vannucchi ◽  
A Grossi ◽  
D Rafanelli ◽  
PR Ferrini

Murine recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) was injected in mice, and the effects on bone marrow, splenic megakaryocytes, megakaryocyte precursors (megakaryocyte colony-forming units [CFU-Meg]) were evaluated. In mice injected three times a day for 6 days with 12,000 to 120,000 U rGM-CSF, no significant modification of both platelet levels and mean platelet volume was observed, while there was a twofold increase in blood neutrophils. However, the rate of platelet production, as assessed by the measurement of 75selenomethionine incorporation into blood platelets, was On the contrary, administration of up to 384,000 U rGM-CSF two times a day for 2 days, as for a typical “thrombopoietin assay,” failed to modify platelet production. A significant dose-related increase in the number of splenic megakaryocytes occurred in mice receiving 60,000 to 120,000 U rGM-CSF, while a slight increase in the number of bone marrow megakaryocytes was observed in mice injected with 120,000 U rGM-CSF. The proportion of bone marrow megakaryocytes with a size less than 18 microns and greater than 35 microns resulted significantly higher in mice receiving rGM-CSF in comparison with controls; an increase in the percentage of splenic megakaryocytes greater than 35 microns was also observed. A statistically significant increase in the total spleen content of CFU-Meg was observed after administration of 90,000 and 120,000 U rGM-CSF three times a day for 6 days, while no effect on bone marrow CFU-Meg was recorded, irrespective of the dose delivered. Finally, 24 hours after a single intravenous injection of rGM-CSF, there was a significant increase in the proportion of CFU-Meg in S- phase, with the splenic progenitors being more sensitive than bone marrow-derived CFU-Meg. These data indicate that rGM-CSF has in vivo megakaryocyte stimulatory activity, and are consistent with previous in vitro observations. However, an effective stimulation of megakaryocytopoiesis in vivo, bringing about an increase in the levels of blood platelets, may require interaction of rGM-CSF with other cytokines.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 68-73 ◽  
Author(s):  
RK Shadduck ◽  
A Waheed ◽  
EJ Wing

Abstract Several previous studies suggested that murine macrophage colony- stimulating factor (CSF-1) might have impaired access to hematopoietic cells in the marrow. The apparent lack of hematopoietic responses to exogenous CSF and the finding of available or unoccupied CSF receptors despite saturating CSF levels in the serum led to studies of a potential blood-bone marrow barrier for this factor. Groups of mice were injected with pure unlabeled CSF-1 by either intravenous (IV) or intraperitoneal (IP) routes. Marrow and spleen cells were obtained at intervals after injection, held at 0 degree C, and assessed for changes in binding of 125I-CSF. Saturation of all available CSF receptors is achieved in vitro with 100 to 150 U CSF/mL. Despite achieving serum levels of 5,000 to 7,000 U/mL after IV injection of 25,000 units of CSF, less than 50% of the marrow receptors and less than 85% of the splenic receptors were saturated or downregulated. The decline in receptor availability was transient, with return of receptor sites in two to four hours. Increasing the IV dose to 125,000 units increased serum CSF values to approximately 20,000 U/mL and led to a virtual disappearance of available receptors for two to three hours. When administered IP, only approximately 40% of marrow and 80% of splenic receptors were affected for two hours. It was necessary to increase the dose of CSF to 250,000 units IP to saturate or downregulate receptors for three to four hours after injection. These observations indicate a marked blood-bone marrow barrier and lesser blood-spleen barrier for the transfer of serum CSF to responsive hematopoietic cells in vivo.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 68-73
Author(s):  
RK Shadduck ◽  
A Waheed ◽  
EJ Wing

Several previous studies suggested that murine macrophage colony- stimulating factor (CSF-1) might have impaired access to hematopoietic cells in the marrow. The apparent lack of hematopoietic responses to exogenous CSF and the finding of available or unoccupied CSF receptors despite saturating CSF levels in the serum led to studies of a potential blood-bone marrow barrier for this factor. Groups of mice were injected with pure unlabeled CSF-1 by either intravenous (IV) or intraperitoneal (IP) routes. Marrow and spleen cells were obtained at intervals after injection, held at 0 degree C, and assessed for changes in binding of 125I-CSF. Saturation of all available CSF receptors is achieved in vitro with 100 to 150 U CSF/mL. Despite achieving serum levels of 5,000 to 7,000 U/mL after IV injection of 25,000 units of CSF, less than 50% of the marrow receptors and less than 85% of the splenic receptors were saturated or downregulated. The decline in receptor availability was transient, with return of receptor sites in two to four hours. Increasing the IV dose to 125,000 units increased serum CSF values to approximately 20,000 U/mL and led to a virtual disappearance of available receptors for two to three hours. When administered IP, only approximately 40% of marrow and 80% of splenic receptors were affected for two hours. It was necessary to increase the dose of CSF to 250,000 units IP to saturate or downregulate receptors for three to four hours after injection. These observations indicate a marked blood-bone marrow barrier and lesser blood-spleen barrier for the transfer of serum CSF to responsive hematopoietic cells in vivo.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3474-3479 ◽  
Author(s):  
BS Charak ◽  
R Agah ◽  
A Mazumder

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been reported to induce antitumor activity in peripheral blood monocytes. We examined the role of GM-CSF on bone marrow (BM) macrophages in inducing antibody-dependent cellular cytotoxicity (ADCC) against murine and human tumor cells in vitro and in vivo with the aim of applying this approach in an autologous bone marrow transplantation (BMT) setting. GM- CSF induced a potent ADCC in BM macrophages against a murine melanoma in vitro. Treatment with GM-CSF alone or with antibody alone had no effect, whereas therapy with combination of both these agents resulted in a significant reduction in dissemination of melanoma both in a nontransplant as well as in BMT settings, with results being more optimal in the latter setting. Adoptive transfer of BM macrophages harvested from mice undergoing therapy with GM-CSF plus antibody significantly reduced the dissemination of melanoma in secondary recipients but only after irradiation, not in intact mice. GM-CSF also induced significant ADCC in human BM macrophages against a melanoma and a lymphoma in vitro and against a lymphoma implanted in nude mice in vivo. Again, these effects were more optimal after chemotherapy. These data suggest that treatment with GM-CSF plus tumor-specific monoclonal antibodies after BMT may induce an antitumor effect and help eradicate the minimal residual disease.


Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1473-1480 ◽  
Author(s):  
AM Vannucchi ◽  
A Grossi ◽  
D Rafanelli ◽  
PR Ferrini

Abstract Murine recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) was injected in mice, and the effects on bone marrow, splenic megakaryocytes, megakaryocyte precursors (megakaryocyte colony-forming units [CFU-Meg]) were evaluated. In mice injected three times a day for 6 days with 12,000 to 120,000 U rGM-CSF, no significant modification of both platelet levels and mean platelet volume was observed, while there was a twofold increase in blood neutrophils. However, the rate of platelet production, as assessed by the measurement of 75selenomethionine incorporation into blood platelets, was On the contrary, administration of up to 384,000 U rGM-CSF two times a day for 2 days, as for a typical “thrombopoietin assay,” failed to modify platelet production. A significant dose-related increase in the number of splenic megakaryocytes occurred in mice receiving 60,000 to 120,000 U rGM-CSF, while a slight increase in the number of bone marrow megakaryocytes was observed in mice injected with 120,000 U rGM-CSF. The proportion of bone marrow megakaryocytes with a size less than 18 microns and greater than 35 microns resulted significantly higher in mice receiving rGM-CSF in comparison with controls; an increase in the percentage of splenic megakaryocytes greater than 35 microns was also observed. A statistically significant increase in the total spleen content of CFU-Meg was observed after administration of 90,000 and 120,000 U rGM-CSF three times a day for 6 days, while no effect on bone marrow CFU-Meg was recorded, irrespective of the dose delivered. Finally, 24 hours after a single intravenous injection of rGM-CSF, there was a significant increase in the proportion of CFU-Meg in S- phase, with the splenic progenitors being more sensitive than bone marrow-derived CFU-Meg. These data indicate that rGM-CSF has in vivo megakaryocyte stimulatory activity, and are consistent with previous in vitro observations. However, an effective stimulation of megakaryocytopoiesis in vivo, bringing about an increase in the levels of blood platelets, may require interaction of rGM-CSF with other cytokines.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3474-3479 ◽  
Author(s):  
BS Charak ◽  
R Agah ◽  
A Mazumder

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been reported to induce antitumor activity in peripheral blood monocytes. We examined the role of GM-CSF on bone marrow (BM) macrophages in inducing antibody-dependent cellular cytotoxicity (ADCC) against murine and human tumor cells in vitro and in vivo with the aim of applying this approach in an autologous bone marrow transplantation (BMT) setting. GM- CSF induced a potent ADCC in BM macrophages against a murine melanoma in vitro. Treatment with GM-CSF alone or with antibody alone had no effect, whereas therapy with combination of both these agents resulted in a significant reduction in dissemination of melanoma both in a nontransplant as well as in BMT settings, with results being more optimal in the latter setting. Adoptive transfer of BM macrophages harvested from mice undergoing therapy with GM-CSF plus antibody significantly reduced the dissemination of melanoma in secondary recipients but only after irradiation, not in intact mice. GM-CSF also induced significant ADCC in human BM macrophages against a melanoma and a lymphoma in vitro and against a lymphoma implanted in nude mice in vivo. Again, these effects were more optimal after chemotherapy. These data suggest that treatment with GM-CSF plus tumor-specific monoclonal antibodies after BMT may induce an antitumor effect and help eradicate the minimal residual disease.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
XG Zhang ◽  
R Bataille ◽  
M Jourdan ◽  
S Saeland ◽  
J Banchereau ◽  
...  

The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the growth of multiple myeloma (MM) was investigated in 21 patients with MM. In 17 patients with proliferating myeloma cells in vivo, recombinant GM-CSF significantly increased the endogenous-IL-6-mediated spontaneous myeloma cell proliferation occurring in 5-day cultures of tumor cells in vitro (P less than .01). Furthermore, GM-CSF was detected in 5-day culture supernatants of myeloma bone marrow cells. This endogenous GM-CSF was produced by the myeloma bone marrow microenvironment but not by myeloma cells and contributed to the spontaneous myeloma-cell proliferation observed in 5-day cultures. In fact, this proliferation was partially blocked (67%) by anti-GM-CSF monoclonal antibodies. The stimulatory effect of rGM-CSF was mediated through IL-6 because it was abrogated by anti-IL-6 monoclonal antibodies. rGM-CSF did not reproducibly increase the endogenous IL-6 production in short-term cultures of bone marrow cells of MM patients. Using an IL-6-dependent myeloma cell line (XG-1 cell line), rGM-CSF was shown to act directly on myeloma cells stimulating by twofold their IL- 6 responsiveness. rGM-CSF did not induce any IL-6 production in XG-1 cells, nor was it able to sustain their growth alone. Although no detectable GM-CSF levels were found in the peripheral or bone marrow blood of MM patients, it is possible that GM-CSF, produced locally by the tumoral environment, enhances the IL-6 responsiveness of myeloma cells in vivo in a way similar to that reported here in vitro.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
XG Zhang ◽  
R Bataille ◽  
M Jourdan ◽  
S Saeland ◽  
J Banchereau ◽  
...  

Abstract The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the growth of multiple myeloma (MM) was investigated in 21 patients with MM. In 17 patients with proliferating myeloma cells in vivo, recombinant GM-CSF significantly increased the endogenous-IL-6-mediated spontaneous myeloma cell proliferation occurring in 5-day cultures of tumor cells in vitro (P less than .01). Furthermore, GM-CSF was detected in 5-day culture supernatants of myeloma bone marrow cells. This endogenous GM-CSF was produced by the myeloma bone marrow microenvironment but not by myeloma cells and contributed to the spontaneous myeloma-cell proliferation observed in 5-day cultures. In fact, this proliferation was partially blocked (67%) by anti-GM-CSF monoclonal antibodies. The stimulatory effect of rGM-CSF was mediated through IL-6 because it was abrogated by anti-IL-6 monoclonal antibodies. rGM-CSF did not reproducibly increase the endogenous IL-6 production in short-term cultures of bone marrow cells of MM patients. Using an IL-6-dependent myeloma cell line (XG-1 cell line), rGM-CSF was shown to act directly on myeloma cells stimulating by twofold their IL- 6 responsiveness. rGM-CSF did not induce any IL-6 production in XG-1 cells, nor was it able to sustain their growth alone. Although no detectable GM-CSF levels were found in the peripheral or bone marrow blood of MM patients, it is possible that GM-CSF, produced locally by the tumoral environment, enhances the IL-6 responsiveness of myeloma cells in vivo in a way similar to that reported here in vitro.


2006 ◽  
Vol 203 (3) ◽  
pp. 583-597 ◽  
Author(s):  
Frank Tacke ◽  
Florent Ginhoux ◽  
Claudia Jakubzick ◽  
Nico van Rooijen ◽  
Miriam Merad ◽  
...  

Monocytes are circulating precursors for tissue macrophages and dendritic cells (DCs) but are not recognized to directly participate in antigen presentation. We developed techniques to label mouse monocyte subsets with particulate tracers in vivo. Gr-1lo but not Gr-1hi monocytes were stably labeled by intravenous injection of 0.5-μm microspheres. Gr-1hi monocytes could be labeled when the microspheres were injected after systemic depletion of blood monocytes and spleen macrophages. In this condition, the phagocytic tracer was transferred to immature bone marrow monocytes by neutrophils and B cells that first carried the particles to the bone marrow. Moreover, antigens from B cells or proteins conjugated to the tracer particles were processed for presentation by monocytes and could induce T cell responses in the periphery. Cell-associated antigen taken up by bone marrow monocytes was retained intracellularly for presentation of the antigen days later when monocyte-derived DCs migrated to lymph nodes or in vitro after differentiation with granulocyte/macrophage colony-stimulating factor. These data reveal that immature monocytes unexpectedly sample antigen from the bone marrow environment and that they can present these antigens after they leave the bone marrow.


Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1656-1663 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Mariateresa Fulciniti ◽  
Teru Hideshima ◽  
Weihua Song ◽  
Merav Leiba ◽  
...  

Abstract Activation of the extracellular signal-regulated kinase1/2 (ERK1/2) signaling cascade mediates human multiple myeloma (MM) growth and survival triggered by cytokines and adhesion to bone marrow stromal cells (BMSCs). Here, we examined the effect of AZD6244 (ARRY-142886), a novel and specific MEK1/2 inhibitor, on human MM cell growth in the bone marrow (BM) milieu. AZD6244 blocks constitutive and cytokine-stimulated ERK1/2 phosphorylation and inhibits proliferation and survival of human MM cell lines and patient MM cells, regardless of sensitivity to conventional chemotherapy. Importantly, AZD6244 (200 nM) induces apoptosis in patient MM cells, even in the presence of exogenous interleukin-6 or BMSCs associated with triggering of caspase 3 activity. AZD6244 sensitizes MM cells to both conventional (dexamethasone) and novel (perifosine, lenalidomide, and bortezomib) therapies. AZD6244 down-regulates the expression/secretion of osteoclast (OC)–activating factors from MM cells and inhibits in vitro differentiation of MM patient PBMCs to OCs induced by ligand for receptor activator of NF-κB (RANKL) and macrophage-colony stimulating factor (M-CSF). Finally, AZD6244 inhibits tumor growth and prolongs survival in vivo in a human plasmacytoma xenograft model. Taken together, these results show that AZD6244 targets both MM cells and OCs in the BM microenvironment, providing the preclinical framework for clinical trials to improve patient outcome in MM.


Sign in / Sign up

Export Citation Format

Share Document