scholarly journals De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy

2012 ◽  
Vol 302 (5) ◽  
pp. F571-F580 ◽  
Author(s):  
Jiong Zhang ◽  
Kim M. Hansen ◽  
Jeffrey W. Pippin ◽  
Alice M. Chang ◽  
Yoshinori Taniguchi ◽  
...  

A progressive decrease in podocyte number underlies the development of glomerulosclerosis and reduced kidney function in aging nephropathy. Recent data suggest that under certain disease states, parietal epithelial cells (PECs) begin to express proteins considered specific to podocytes. To determine whether this phenomenon increases in aging kidneys, 4-, 12-, and 20-mo ad libitum-fed and 20-mo calorie-restricted (CR) rats were studied. Single and double immunostaining were performed with antibodies to the PEC protein paired box gene 2 (PAX2) and tight junction protein claudin-1, the podocyte-specific protein Wilms' tumor 1 (WT-1), and the proliferating cell protein (Ki-67). ImageJ software measured Bowman's basement membrane (BBM) length and glomerular tuft area in individual glomeruli from each animal to assess glomerular size. The results showed that in aged ad libitum rats, the decrease in number of podocytes/glomerular tuft area was accompanied by an increase in the number of PECs/BBM length at 12 and 20 mo ( P < 0.01 vs. 4 mo). The increase in PEC number was due to proliferation (increase in PAX2/Ki-67 double-positive cells). Aging was accompanied by a progressive increase in the number of glomerular cells double staining for PAX2 and WT-1. In contrast, the control 20-mo-old CR rats had no increase in glomerular size, and podocyte and PEC number were not altered. These results suggest that although the number of PECs and PECs expressing podocyte proteins increase in aging nephropathy, they are likely not sufficient to compensate for the decrease in podocyte number.

2010 ◽  
Vol 298 (3) ◽  
pp. F702-F711 ◽  
Author(s):  
Takamoto Ohse ◽  
Michael R. Vaughan ◽  
Jeffrey B. Kopp ◽  
Ronald D. Krofft ◽  
Caroline B. Marshall ◽  
...  

Studies have shown that certain cells of the glomerular tuft begin to express proteins considered unique to other cell types upon injury. Little is known about the response of parietal epithelial cells (PEC) to injury. To determine whether PECs change their phenotype upon injury to also express proteins traditionally considered podocyte specific, the following four models of glomerular disease were studied: the transforming growth factor (TGF)-β1 transgenic mouse model of global glomerulosclerosis, the adriamycin model of focal segmental glomerulosclerosis (FSGS), the anti-glomerular basement membrane (GBM) model of crescentic glomerulonephritis, and the passive Heymann nephritis model of membranous nephropathy. Double immunostaining was performed with antibodies to podocyte-specific proteins (synaptopodin and Wilms' tumor 1) and antibodies to PEC specific proteins (paired box gene 8 and claudin-1). No double staining was detected in normal mice. In contrast, the results showed a statistical increase in the number of cells attached to Bowman basement membrane that were double-positive for both podocyte/PEC proteins in TGF-β;1 transgenic, anti-GBM, and membranous animals. Double-positive cells for both podocyte and PEC proteins were also statistically increased in the glomerular tuft in TGF-β1 transgenic, anti-GBM, and FSGS mice. These results are consistent with glomerular cells coexpressing podocyte and PEC proteins in experimental glomerular disease, but not under normal circumstances.


Author(s):  
Laura Miesen ◽  
Péter Bándi ◽  
Brigith Willemsen ◽  
Fieke Mooren ◽  
Thiago Strieder ◽  
...  

In the glomerulus, Bowman's space is formed by a continuum of glomerular epithelial cells. In focal segmental glomerulosclerosis (FSGS), glomeruli show segmental scarring, a result of activated PECs invading the glomerular tuft. The segmental scars interrupt the epithelial continuum. However, non-sclerotic segments seem to be preserved even in glomeruli with advanced lesions. We studied the histology of the segmental pattern in Munich Wistar Frömter (MWF) rats, a model for secondary FSGS. Our results showed that matrix layers lined with PECs cover the sclerotic lesions. These PECs formed contacts with podocytes of the uninvolved tuft segments, restoring the epithelial continuum. Formed Bowman's spaces were still connected to the tubular system. Furthermore, in biopsies of patients with secondary FSGS we also detected matrix layers formed by PECs, separating the uninvolved from the sclerotic glomerular segments. While PECs have a major role in the formation of glomerulosclerosis, we showed that in FSGS, PECs also restore the glomerular epithelial cell continuum that surrounds Bowman's space. This process may be beneficial and indispensable for glomerular filtration in the uninvolved segments of sclerotic glomeruli.


2013 ◽  
Vol 304 (11) ◽  
pp. F1375-F1389 ◽  
Author(s):  
Jiong Zhang ◽  
Jeffrey W. Pippin ◽  
Ronald D. Krofft ◽  
Shokichi Naito ◽  
Zhi-Hong Liu ◽  
...  

Prednisone is a mainstay of treatment for patients with focal segmental glomerulosclerosis (FSGS), a disease characterized by reduced podocyte number and glomerulosclerosis. Although the systemic immune-modulatory effects of prednisone are well-known, direct tissue effects on glomerular cells are poorly understood. Experimental FSGS was induced in mice with a cytotoxic anti-podocyte antibody, resulting in an abrupt decrease in podocyte number by day 3, proteinuria, and the development of glomerulosclerosis. Administering daily prednisone to mice with FSGS, beginning at day 3, significantly increased podocyte number at weeks 2 and 4. Podocyte number did not increase in control mice with FSGS given DMSO. The increase in podocyte number in prednisone-treated mice correlated significantly with reduced glomerulosclerosis. Prednisone reduced podocyte apoptosis measured by synaptopodin+/caspase-3+ double staining. Additionally, the number of podocyte progenitors, defined as cells expressing both a parietal epithelial cell protein and a podocyte protein, was significantly increased in prednisone-treated mice with FSGS at weeks 2 and 4. This was associated with increased phospho-ERK staining in both parietal epithelial cells (PAX2+/p-ERK+) and in podocyte progenitors (WT-1+/p-ERK+ lining Bowman's capsule). These data show that in this model of experimental FSGS, prednisone augments glomerular repair by increasing podocyte number through direct effects on both glomerular epithelial cells. Prednisone limits podocyte loss by reducing apoptosis, and it increases regeneration by augmenting the number of podocyte progenitors. The data support a direct glomerular cell action for prednisone in improving outcomes in FSGS.


2012 ◽  
Vol 121 (1-2) ◽  
pp. e23-e37 ◽  
Author(s):  
Jiong Zhang ◽  
Jeffrey W. Pippin ◽  
Michael R. Vaughan ◽  
Ronald D. Krofft ◽  
Yoshinori Taniguchi ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Florian Siegerist ◽  
Kerrin Ursula Ingeborg Hansen ◽  
Sophie Daniel ◽  
Maximilian Schindler ◽  
Antje Blumenthal ◽  
...  

Abstract Background and Aims Although focal and segmental glomerulosclerosis (FSGS) has been in the scientific focus for many years, it is still a massive burden for patients with no causal therapeutic option. In FSGS, glomerular podocytes are injured, parietal epithelial cells (PECs) are activated and engage in the formation of cellular lesions leading to progressive glomerular scarring. Therefore, novel drug-screening assays are needed. Unfortunately, simple cellular in vitro-based screening assays are not ideal as glomerular architecture and crosstalk between glomerular cells is insufficiently modelled. Therefore, reliable animal models are still required for drug development, which unfortunately are not ideal for high-throughput applications. To date, due to its size, easy maintenance and breeding, zebrafish larvae are the simplest vertebrate model that are used in high-content screenings. Until today, it was unclear whether zebrafish can be used as a model for human FSGS. We therefore aimed to investigate whether partial podocyte-depletion in larval zebrafish leads to formation of FSGS-like disease and if the model can be used for screening purposes. Method We used a transgenic zebrafish model of pharmacogenetic podocyte depletion: In the Tg(nphs2:GAL4), Tg(UAS:Eco.nfsb-mCherry) strain, podocytes express the bacterial nitroreductase under control of the podocin promotor and can be dose-dependently ablated upon administration of metronidazole. Proteinuria was quantified using in vivo confocal laser scanning microscopy of intravenously administered high-molecular-weight fluorescent dextran. Plastic-embedded larvae where histologically and morphometrically assessed using HE, PAS and Jone’s silver staining after metronidazole washout. Glomerular ultrastructure was assessed using transmission electron microscopy of ultrathin sections. Immunofluorescence staining was carried out on kryosections to investigate extracellular matrix deposition (collagen-1, laminin), cellular proliferation (pcna) as well as parietal cell origin and activation (pax2a). Results To partially deplete podocytes, larvae where treated with 80 µM metronidazole from 4-6 days post fertilization, so that a subset of podocytes was depleted. In contrast to controls, podocyte-depleted larvae developed severe whole-body edema (Fig. A). Dynamic in vivo imaging of intravascular 500 kDa fluorescent dextran revealed massive leakage of the glomerular filtration barrier. Ultrastructural and immunofluorescent evaluation showed broad foot process effacement of remaining podocytes (Fig. D) and massive decrease of the slit diaphragm component podocin. Moreover, we found numerous sub-podocyte space pseudocysts (asterisk in Fig. D), microvillous transformation and formation of podocytic tight junctions as well as parietovisceral adhesions of the two layers of Bowman’s capsule. Parietal epithelial cells where activated, changed their phenotype towards a cuboidal shape, began to proliferate as demonstrated by pcna immunofluorescence and where recruited to cellular lesions on the glomerular tuft as demonstrated by the presence of cuboidal pax2a+ cells on the glomerular tuft (arrowheads Fig. B). Moreover, we found significant extracellular matrix deposition by the pax2a+ cells as demonstrated by Jone’s silver staining and laminin immunofluorescence (Fig. C). Conclusion Herein we show that upon podocyte-depletion, zebrafish larvae develop important functional and morphological features of human FSGS such as severe proteinuria and edema, podocyte foot process effacement, activation of parietal epithelial cells which contribute to cellular lesions and deposit extracellular matrix on the glomerular tuft. We conclude that this model resembles the human disease in important features and therefore propose its applicability for a high-throughput drug screening assay for FSGS.


2014 ◽  
Vol 306 (1) ◽  
pp. F98-F104 ◽  
Author(s):  
Kazuo Sakamoto ◽  
Toshiharu Ueno ◽  
Namiko Kobayashi ◽  
Satoshi Hara ◽  
Yasutoshi Takashima ◽  
...  

Focal segmental glomerulosclerosis (FSGS) is a podocyte disease. Among the various histologies of FSGS, active epithelial changes, hyperplasia, as typically seen in the collapsing variant, indicates disease progression. Using a podocyte-specific injury model of FSGS carrying a genetic podocyte tag combined with double immunostaining by different sets of podocytes and parietal epithelial cell (PEC) markers [nestin/Pax8, Wilms' tumor-1 (WT1)/claudin1, and podocalyxin/Pax2], we investigated the direction of epithelial phenotypic transition and its role in FSGS. FSGS mice showed progressive proteinuria and renal dysfunction often accompanied by epithelial hyperplasia, wherein 5-bromo-4-chloro-3-indoyl β-d-galactoside (X-gal)-positive podocyte-tagged cells were markedly decreased. The average numbers of double-positive cells in all sets of markers were significantly increased in the FSGS mice compared with the controls. In addition, the average numbers of double-positive cells for X-gal/Pax8, nestin/Pax8 and podocalyxin/Pax2 staining in the FSGS mice were comparable, whereas those of WT1/claudin1 were significantly increased. When we divided glomeruli from FSGS mice into those with FSGS lesions and those without, double-positive cells tended to be more closely associated with glomeruli without FSGS lesions compared with those with FSGS lesions. Moreover, the majority of double-positive cells appeared to be isolated and very rarely associated with FSGS lesions (1/1,997 glomeruli). This study is the first to show the incidence and localization of epithelial cells with phenotypical changes in FSGS using a genetic tag. The results suggest that the major direction of epithelial phenotypic transition in cellular FSGS is from podocytes to PECs and that these cells were less represented in the active lesions of FSGS.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lihua Ni ◽  
Cheng Yuan ◽  
Xiaoyan Wu

AbstractPodocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific protein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments for this process.


2004 ◽  
Vol 200 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Marina N. Fleeton ◽  
Nikhat Contractor ◽  
Francisco Leon ◽  
J. Denise Wetzel ◽  
Terence S. Dermody ◽  
...  

We explored the role of Peyer's patch (PP) dendritic cell (DC) populations in the induction of immune responses to reovirus strain type 1 Lang (T1L). Immunofluorescence staining revealed the presence of T1L structural (σ1) and nonstructural (σNS) proteins in PPs of T1L-infected mice. Cells in the follicle-associated epithelium contained both σ1 and σNS, indicating productive viral replication. In contrast, σ1, but not σNS, was detected in the subepithelial dome (SED) in association with CD11c+/CD8α−/CD11blo DCs, suggesting antigen uptake by these DCs in the absence of infection. Consistent with this possibility, PP DCs purified from infected mice contained σ1, but not σNS, and PP DCs from uninfected mice could not be productively infected in vitro. Furthermore, σ1 protein in the SED was associated with fragmented DNA by terminal deoxy-UTP nick-end labeling staining, activated caspase-3, and the epithelial cell protein cytokeratin, suggesting that DCs capture T1L antigen from infected apoptotic epithelial cells. Finally, PP DCs from infected mice activated T1L-primed CD4+ T cells in vitro. These studies show that CD8α−/CD11blo DCs in the PP SED process T1L antigen from infected apoptotic epithelial cells for presentation to CD4+ T cells, and therefore demonstrate the cross-presentation of virally infected cells by DCs in vivo during a natural viral infection.


Sign in / Sign up

Export Citation Format

Share Document