extracellular matrix deposition
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 83)

H-INDEX

36
(FIVE YEARS 6)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tyler Margetts ◽  
Michael Peng ◽  
Chenna Kesavulu Sugali ◽  
Naga Pradeep Rayana ◽  
Jiannong Dai ◽  
...  

Introduction Prolonged application of glucocorticoids (GCs) induces ocular hypertension (OHT) and glaucoma. This increased intraocular pressure (IOP) is due to pathological changes in the trabecular meshwork (TM) outflow pathway tissues including impaired cell functions and extracellular matrix deposition. The changes and role of the TM in GC-induced OHT have been well studied. However, the role of the tissues distal to the TM (distal outflow tissues) is unclear. This study aims to further uncover the role of distal outflow tissue in GC-induced OHT using a novel perfusion organ culture (POC) model. Methods Huma corneal rims tissues were attached to 3D printed transparent perfusion plates using a combination of thin and thick glues. The artificial anterior chamber was perfused with DMEM-low glucose medium at 2ul/min to mimic aqueous humor production, and IOP was recorded using pressure transducers and a computerized system. To determine the role of distal tissue in GC-induced IOP changes, the TM tissue was carefully removed from both eyes, and one eye was treated with ethanol (EtOH) and the fellow eye with dexamethasone (DEX). Results The model was validated through a comparison of the IOP and TM stiffness of glue contaminated to non-contaminated corneal rims. The glue contaminated rim showed highly increased IOP and TM stiffness while the non-contaminated rim showed normal values. After validation, the TM was removed from paired corneal rims. One rim was treated with 100nM DEX and the fellow rim with 0.1% EtOH. The DEX treated rim showed increase in IOP while the EtOH control showed little change. Conclusion We created a novel corneal rim perfusion culture model for the study of GC-induced OHT. This model showed promising results of distal outflow involvement in glucocorticoid induced ocular hypertension. Further studies are needed to elucidate the role of distal outflow tissues in GC responsiveness in the eye.


2021 ◽  
Author(s):  
Marija Dinevska ◽  
Samuel S. Widodo ◽  
Liam Furst ◽  
Lucero Cuzcano ◽  
Yitong Fang ◽  
...  

ABSTRACTBrain tumor cells thrive by adapting to the signals in their microenvironment. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Using multiple tissue analysis approaches to identify and measure immune cell infiltration and extracellular matrix deposition in brain tumors, we show that low-grade glioma is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade glioma exhibits abundant immune cell infiltration and activation, as well as extensive collagen deposition. Spatial analysis shows that most T-cells are sequestered in perivascular nests, but macrophages penetrate deep into tumor cell rich regions. High-grade gliomas exhibit heterogeneous PI3K and MAPK signaling, which correlates with distinct pathological hallmarks, including tumor angiogenesis, tumor cell density and extracellular matrix deposition. Our results also provide compelling evidence that tissue remodeling is an important element in glioma progression, and that targeting the extracellular matrix will be critical to improving GBM therapy.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3151
Author(s):  
Tomasz Jasiński ◽  
Łukasz Zdrojkowski ◽  
Ewa Kautz ◽  
Edyta Juszczuk-Kubiak ◽  
Graça Ferreira-Dias ◽  
...  

Endometrosis is an important mares’ disease which considerably decreases their fertility. As classic endometrial classification methods might be insufficient for tissue pathological evaluation, further categorization into active/inactive and destructive/non-destructive types was developed by Hoffmann and others. This study aimed to compare NF-κB pathway genes transcription among histopathological types of endometrosis, following Hoffmann and co-authors’ classification. Endometrial samples, collected postmortem from cyclic mares (n = 100) in estrus or diestrus, were classified histologically and used for gene transcription assessment. Gene transcription of NF-κB subunits (RelA, NF-κB1, NF-κB2), pro-inflammatory molecules (MCP-1, IL-6), and hyaluronan synthases (HAS 1, HAS 2, HAS 3) was compared among endometrosis types (active, non-active, destructive, non-destructive). Most individual mRNA samples showed high expression of RelA, NF-κB1, and MCP-1 gene transcripts and the destructive type of endometrosis, simultaneously. The expression of RelA and NF-κB1 genes was higher in active destructive group than in the other groups only in the follicular phase, as well as being higher in the inactive destructive group than in the others, only in the mid-luteal phase. The increase in gene transcription of the NF-κB canonical activation pathway in destructive endometrosis may suggest the highest changes in extracellular matrix deposition. Moreover, the estrous cycle phase might influence fibrosis pathogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Qin ◽  
Mingliang Wang ◽  
Ting Zhang ◽  
Yingyu Wang ◽  
Yunyun Zhang ◽  
...  

Fibrosis is a worldwide public health problem, which typically results from chronic diseases and often leads to organ malfunction. Chronic inflammation has been suggested to be the major trigger for fibrogenesis, yet mechanisms by which inflammatory signals drive fibrogenesis have not been fully elucidated. Total C-21 steroidal glycosides (TCSG) from Baishouwu are the main active components of the root of Cynanchum auriculatum Royle ex Wight, which exert hepatoprotective and anti-inflammation properties. In this study, we established a mouse model with the coexistence of hepatic and renal fibrosis and aimed to investigate the effects of TCSG from Baishouwu on fibrosis and explored the potential mechanisms. The results of biochemical and pathological examinations showed that TCSG from Baishouwu improved liver and kidney function and alleviated hepatic and renal fibrosis by reducing collagen and extracellular matrix deposition in bile duct ligation and unilateral ureteral occlusion (BDL&UUO) mice. According to network pharmacology analysis, the mechanisms underlying the effects of TCSG from Baishouwu on hepatic and renal fibrosis were associated with inflammatory response pathways, including “Signaling by interleukins”, “MAP kinase activation”, “MyD88 cascade initiated on plasma membrane”, and “Interleukin-1 family signaling”. Regression analysis and western blot results revealed that IL-1β/MyD88 inflammation signaling played an essential role in the anti-fibrotic effects of TCSG from Baishouwu. Further data displayed that TCSG from Baishouwu affected inflammatory response and extracellular matrix deposition via suppressing the activation of p38 MAPK/JNK and NF-κB p65 signaling cascades both in the liver and kidney of BDL&UUO mice. Thus, our findings suggest TCSG from Baishouwu as a natural regimen against hepatic and renal fibrosis and provide direct evidence that IL-1β/MyD88 signaling crucially contributes to hepatic and renal fibrosis and modulates liver-kidney crosstalk by maintaining tight control over inflammatory responses.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3599
Author(s):  
Pavel Solopov ◽  
Ruben Manuel Luciano Colunga Biancatelli ◽  
Christiana Dimitropoulou ◽  
John D. Catravas

We previously reported that female mice exhibit protection against chemically induced pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part, via stimulation of estrogen receptors; furthermore, compared to residents of Western countries, residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g., genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung fibrosis and chronic lung dysfunction.


2021 ◽  
Author(s):  
Hailong Li ◽  
Jin He ◽  
Ruotong Zhang ◽  
Yiying Wei ◽  
Shanshan Zhang ◽  
...  

Abstract Forkhead box protein O3 (FOXO3) has good inhibition ability toward fibroblast activation and extracellular matrix, especially for the treatment of idiopathic pulmonary fibrosis. How FOXO3 regulates pulmonary fibrosis remains unclear. In this study, we reported that FOXO3 had binding sequences with F-spondin 1 (SPON1) promoter, which can activate its transcription and selectively promote the expression of SPON1 circRNA (circSPON1) but not mRNA expression. We further demonstrated that circSPON1 was involved in the extracellular matrix deposition of HFL1. In the cytoplasm, circSPON1 directly interacted with TGF-β-induced Smad3 and inhibited the activation of fibroblasts by inhibiting nuclear translocation. Moreover, circSPON1 bound to miR-942-5p and miR-520f-3p that interfered with Smad7 mRNA and promoted Smad7 expression. This study revealed the mechanism of FOXO3 in the occurrence and development of pulmonary fibrosis. Potential therapeutic targets and new insights into the diagnosis and treatment of idiopathic pulmonary fibrosis based on circRNA were also provided.


Sign in / Sign up

Export Citation Format

Share Document