Antidiuretic hormone-induced intramembranous alterations in mammalian collecting ducts

1978 ◽  
Vol 235 (5) ◽  
pp. F440-F443 ◽  
Author(s):  
Mehmet C. Harmanci ◽  
William A. Kachadorian ◽  
Heinz Valtin ◽  
Vincent A. DiScala

Freeze-fracture electron microscopy had previously revealed antidiuretic hormone-induced aggregates of intramembranous particles in amphibian urinary bladder. To investigate the effects of antidiuretic hormone (ADH) in another ADH-sensitive epithelium, namely, mammalian renal collecting ducts, freeze-fracture studies were carried out in Brattleboro homozygous rats. Collecting duct luminal membranes of ADH-treated homozygotes showed intramembranous particle clusters (117 ± 17/100 μm2) that were loosely packed and that occurred on both exoplasmic (E) and protoplasmic (P) faces. Untreated, control homozygous rats had significantly less (3 ± 1/100 μm2) clusters. Changes similar to those seen in ADH-treated rats were observed in water-deprived Wistar rats. The clustered particles differed from those seen in ADH-treated amphibian urinary bladder in that the latter occurred only on the P face and were more densely packed. Nevertheless, our observations suggest a common membrane effect for ADH action that may apply in mammals and amphibia alike. freeze-fracture; Brattleboro homozygous rats; membrane particle clusters Submitted on March 6, 1978 Accepted on July 14, 1978

1985 ◽  
Vol 249 (4) ◽  
pp. F582-F589 ◽  
Author(s):  
D. Brown ◽  
G. I. Shields ◽  
H. Valtin ◽  
J. F. Morris ◽  
L. Orci

We suggested previously, on the basis of indirect evidence, that in two strains of mice with nephrogenic defects of urinary concentration the deficiency arose from an inadequate rise in water permeability of the collecting duct system. In this study we tested the question further by assuming that the frequency of intramembranous particle (IMP) clusters seen by freeze-fracture can be used as a morphological marker of vasopressin-induced water permeability. Three genotypes of mice were studied: 1) DI +/+ Severe, with florid, vasopressin-resistant diabetes insipidus; 2) DI +/+ Nonsevere, with an intermediate deficiency of urinary concentration; and 3) normal, VII +/+ mice. In addition, we examined a group of DI +/+ Severe mice that had been injected with exogenous 1-desamino-8-D-arginine vasopressin (DDAVP) subcutaneously for 3 days. Since the results in this group did not differ from those in untreated DI +/+ Severe mice, all data for this genotype were combined. IMP clusters within luminal membranes of inner medullary collecting duct principal cells were quantified by freeze-fracture electron microscopy. Urinary osmolality and percentage of cells showing clusters were, respectively: 203 +/- 43 mosmol/kg H2O and 0% in DI +/+ Severe mice; 1,133 +/- 86 and 33 +/- 4 in DI +/+ Nonsevere mice; and 2,234 +/- 190 and 52 +/- 5 in VII +/+ animals. With the exception of one animal, there was no overlap of the data, which were significantly different from one another for each variable. We conclude that in DI +/+ Severe mice, both endogenous and exogenous vasopressin are unable to increase the water permeability of medullary collecting ducts.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 239 (6) ◽  
pp. F560-F564 ◽  
Author(s):  
M. C. Harmanci ◽  
P. Stern ◽  
W. A. Kachadorian ◽  
H. Valtin ◽  
V. A. DiScala

Vasopressin increases the permeability of collecting ducts to water. Administration of this hormone is also associated with an increase in intramembranous particle clusters in rat collecting duct luminal membrane (CDLM) as revealed by freeze-fracture electron microscopy. To determine whether this morphologic alteration of CDLM is quantitatively related to the dose of vasopressin, anesthetized Brattleboro homozygous rats were given the hormone at different doses. CDLM from kidneys removed before and during infusion were examined by freeze-fracture electron microscopy. The frequency of CDLM clusters as well as the area of membrane occupied by them was related to the dose of vasopressin. In a separate experimental protocol, a decrease in intramembranous particle clusters accompanied a decrease in urinary osmolality when vasopressin was stopped. We conclude that CDLM intramembranous particle clusters represent a specific structural change related to the action of vasopressin. Accordingly, quantitation of CDLM clusters may serve as an end point for the study of vasopressin-induced water permeability.


1997 ◽  
Vol 110 (22) ◽  
pp. 2855-2860 ◽  
Author(s):  
J.M. Verbavatz ◽  
T. Ma ◽  
R. Gobin ◽  
A.S. Verkman

Freeze-fracture electron microscopy (FFEM) of kidney collecting duct, muscle, astrocytes in brain, and other mammalian tissues has revealed regular square arrays of intramembrane particles called orthogonal arrays of particles (OAPs). Their possible role in membrane structure and transport have been proposed, and their absence or decrease has been noted in a variety of hereditary and acquired diseases. A transgenic mouse lacking water channel AQP4 was used to show that AQP4 is the OAP protein. FFEM was done on kidney, skeletal muscle, and brain from AQP4 wild-type [+/+], heterozygous [+/−] and knock-out [-/-] mice. The [-/-] mice did not express detectable AQP4 protein, but were grossly indistinguishable from [+/+] mice. FFEM was done on blinded samples of kidney, brain and muscle from 9 mice. In all 6 kidney samples from [+/+] and [+/−] mice, OAPs similar to those in AQP4-transfected CHO cells were found in basolateral membranes of collecting duct principal cells. In all muscle and brain samples from [+/+] and [+/−] mice, OAPs of identical ultrastructure to those in kidney were seen, but in smaller patch sizes. OAPs were not seen in any sample from [-/-] mice. Label-fracture analysis using a peptide-derived AQP4 polyclonal antibody showed immunogold labeling of OAPs in AQP4-expressing CHO cells. These studies provide direct evidence that AQP4 is required for formation of OAPs and is a component of OAPs, thus establishing the identity and function of OAPs.


1999 ◽  
Vol 276 (2) ◽  
pp. F304-F314 ◽  
Author(s):  
Shigeru Watanabe ◽  
Kazumichi Matsushita ◽  
Paul B. McCray ◽  
John B. Stokes

The epithelial Na+ channel (ENaC) plays an important role in regulating Na+ balance in neonatal and adult life. Using in situ hybridization, we localized α-, β-, and γ-rat ENaC (rENaC) mRNA in developing rat kidney and uroepithelia. rENaC mRNA was first detectable on fetal day 16, and by fetal day 17, mRNA was abundant in the terminal collecting duct and uroepithelia. After birth, the intensity of the signals for all three subunits increased in the cortical collecting ducts and by 9 days after birth had diminished in the inner medullary collecting ducts. Expression in uroepithelial cells was different. mRNA for β- and γ-rENaC, but not α-rENaC, was detected in pelvis, ureters, and bladder at all stages of development beyond fetal day 16. By RNase protection assay (RPA), the greatest increase in subunit abundance in the kidney occurred before birth. Between postnatal days 9 and 30, the abundance of β- and γ-rENaC decreased relative to α-rENaC in outer and inner medulla. The urinary bladder, in contrast, demonstrated the greatest increase in β- and γ-rENaC mRNA abundance after birth. We were generally unable to detect α-rENaC by RPA in urinary bladder. Feeding weaned rats a diet of high or low NaCl did not change the abundance of any of the subunit mRNAs in bladder. These results demonstrate additional heterogeneity of developmental expression and regulation of ENaC. The differences between the collecting duct and uroepithelial cell rENaC mRNA regulation raise the possibility of significant differences in function.


1990 ◽  
Vol 258 (2) ◽  
pp. F266-F272 ◽  
Author(s):  
S. P. Nadler

To assess the effects of increased tonicity on water reabsorption (Jv) in inner medullary collecting ducts (IMCD), antidiuretic hormone (ADH)-stimulated Jv and water permeability (PF) were determined in microperfused IMCD dissected from the inner medulla of rat kidney. In IMCD exposed to a 150-mosmol/kgH2O gradient in isotonic bath, ADH-stimulated PF averaged 719 +/- 93 microns/s. Symmetric addition of 75 mM NaCl to perfusate and bath resulted in a significant augmentation of ADH-stimulated PF (56%) that was reversible when initial solutions were restored. Despite the increase in PF, JV did not change but would have decreased by 16% (P less than 0.01) had PF not increased, because of the greater absolute axial increase in luminal tonicity that occurs with more hypertonic luminal solutions. When 150 mM mannitol was used to increase tonicity, similar effects were observed. However, 150 mM urea had no effect on ADH-stimulated PF. In IMCD exposed to 8-para-(chlorophenylthio)-adenosine 3',5'-cyclic monophosphate, addition of 75 mM NaCl to both and perfusate also resulted in a 76% increase in PF. These results are the first to demonstrate directly that increased effective tonicity augments ADH-stimulated PF in rat IMCD at a site distal to adenosine 3',5'-cyclic monophosphate generation. This effect may contribute to maintenance of medullary interstitial tonicity during antidiuresis by ensuring that most water reabsorption occurs more proximally within the IMCD.


1982 ◽  
Vol 92 (1) ◽  
pp. 237-241 ◽  
Author(s):  
R M Hays ◽  
J Bourguet ◽  
B H Satir ◽  
N Franki ◽  
J Rapoport

Aggregates of intramembrane particles appear in the luminal membranes of renal collecting duct and amphibian bladder cells after stimulation by antidiuretic hormone (ADH). We undertook this freeze-fracture study to determine whether particle aggregates, once in place, remain in the luminal membrane of the amphibian bladder after the membrane is physically separated from the rest of the cell. We found that the aggregates do remain in high yield in isolated membranes stabilized with a bifunctional imidoester (DTBP) followed by fixation with glutaraldehyde, or unfixed but stabilized with DTBP. These findings support the view that the particles are intrinsic membrane components and that their organization in the form of aggregates does not depend on the presence of the intact cell. In addition, the availability of isolated membranes containing particle aggregates provides a starting point for the isolation of the water-conducting proteins.


2002 ◽  
Vol 282 (6) ◽  
pp. F998-F1011 ◽  
Author(s):  
Tian-Xiao Sun ◽  
Alfred Van Hoek ◽  
Yan Huang ◽  
Richard Bouley ◽  
Margaret McLaughlin ◽  
...  

Before the identification of aquaporin (AQP) proteins, vasopressin-regulated “water channels” were identified by freeze-fracture electron microscopy as aggregates or clusters of intramembraneous particles (IMPs) on hormonally stimulated target cell membranes. In the kidney collecting duct, these IMP clusters were subsequently identified as possible sites of clathrin-coated pit formation on the plasma membrane, and a clathrin-mediated mechanism for internalization of vasopressin-sensitive water channels was suggested. Using an antibody raised against the extracellular C loop of AQP2, we now provide direct evidence that AQP2 is concentrated in clathrin-coated pits on the apical surface of collecting duct principal cells. Furthermore, by using a fracture-label technique applied to LLC-PK1cells expressing an AQP2- c-myc construct, we show that AQP2 is located in IMP aggregates and is concentrated in shallow membrane invaginations on the surface of forskolin-stimulated cells. We also studied the functional role of clathrin-coated pits in AQP2 trafficking by using a GTPase-deficient dynamin mutation (K44A) to inhibit clathrin-mediated endocytosis. Immunofluorescence labeling and freeze-fracture electron microscopy showed that dominant-negative dynamin 1 and dynamin 2 mutants prevent the release of clathrin-coated pits from the plasma membrane and induce an accumulation of AQP2 on the plasma membrane of AQP2-transfected cells. These data provide the first direct evidence that AQP2 is located in clathrin-coated pits and show that AQP2 recycles between the plasma membrane and intracellular vesicles via a dynamin-dependent endocytotic pathway. We propose that the IMP clusters previously associated with vasopressin action represent sites of dynamin-dependent, clathrin-mediated endocytosis in which AQP2 is concentrated before internalization.


1987 ◽  
Vol 252 (2) ◽  
pp. F357-F360
Author(s):  
S. D. Levine ◽  
M. Jacoby

We have reported that Pf/Pd(w) (the ratio of osmotic and diffusional water permeabilities) for the luminal membrane of toad urinary bladder is approximately 17 for tissues stimulated with either vasopressin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP). In a recent abstract, Kachadorian and co-workers have shown that tissues stimulated with adenosine 3',5'-cyclic monophosphate (cAMP) or forskolin have a lower Pf than would be anticipated from the frequency of aggregates visualized on the flat portion of the luminal membrane using freeze-fracture electron microscopy. We report here measurements of Pf/Pd(w) for the luminal membrane of tissues receiving these agents: Pf/Pd(w) for submaximally stimulated tissues was the same, regardless of whether the stimulant was vasopressin (12.7 +/- 0.3), forskolin (13.7 +/- 0.9), or cAMP (12.0 +/- 1.3). The calculated Pd(w)'s for the series barrier were also identical (6.8 +/- 0.5, 6.5 +/- 0.3, and 8.2 +/- 1.0 X 10(-4) cm/s respectively). Our data, taken together with those of Kachadorian et al. are consistent with a number of possibilities: because our methodology does not permit estimation of Pf for the series barrier, we cannot rule out the possibility of a "post-luminal barrier" that is rate-limiting for Pf, but not for Pd(w) in forskolin- and cAMP-stimulated tissues, Pf and Pd(w) of the luminal surface aggregates could decrease in parallel, so that luminal membrane Pf/Pd(w) remains constant, and there could be a diminished frequency of fused aggregate-rich aggrephores, but not of aggregates that are on the flat portion of the luminal membrane. Only the latter can be unequivocally quantitated using freeze-fracture electron microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 72 (1) ◽  
pp. 133-143 ◽  
Author(s):  
R L Weiss ◽  
D A Goodenough ◽  
U W Goodenough

Freeze-fracture replicas reveal that five distinct types of intramembranous particle arrays coexist within a small sector of the C. reinhardtii cell flagellar membrane. Of these, three are newly described in this report. (a) Flagellar bracelets, which encircle the flagellar bases, appear to be intrinsically ordered strands of particles of unknown function. (b) Strut arrays, representing nine sites where the basal body attaches to the membrane, appear to serve a mechanical function. (c) Contractile vacuole arrays, which develop into circular plaques of particles, appear to serve as "membrane gates" through which water is discharged from the cell.


Sign in / Sign up

Export Citation Format

Share Document