Freeze-fracture study of the pavement cell in the lamprey gill epithelium. Analogy of membrane structure with the granular cell in the amphibian urinary bladder

1989 ◽  
Vol 66 (1-2) ◽  
pp. 165-171 ◽  
Author(s):  
Helmut Bartels
Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

The amphibian urinary bladder has been used as a ‘model’ system for studies of the mechanism of action of antidiuretic hormone (ADH) in stimulating transepithelial water flow. The increase in water permeability is accompanied by morphological changes that include the stimulation of apical microvilli, mobilization of microtubules and microfilaments and vesicular membrane fusion events . It has been shown that alterations in the cytosolic calcium concentrations can inhibit ADH transmembrane water flow and induce alterations in the epithelial cell cytomorphology, including the cytoskeletal system . Recently, the subapical granules of the granular cell in the amphibian urinary bladder have been shown to contain high concentrations of calcium, and it was suggested that these cytoplasmic constituents may act as calcium storage sites for intracellular calcium homeostasis. The present study utilizes the calcium antagonist, verapamil, to examine the effect of calcium deprivation on the cytomorphological features of epithelial cells from amphibian urinary bladder, with particular emphasis on subapical granule and microfilament distribution.


1978 ◽  
Vol 235 (5) ◽  
pp. F440-F443 ◽  
Author(s):  
Mehmet C. Harmanci ◽  
William A. Kachadorian ◽  
Heinz Valtin ◽  
Vincent A. DiScala

Freeze-fracture electron microscopy had previously revealed antidiuretic hormone-induced aggregates of intramembranous particles in amphibian urinary bladder. To investigate the effects of antidiuretic hormone (ADH) in another ADH-sensitive epithelium, namely, mammalian renal collecting ducts, freeze-fracture studies were carried out in Brattleboro homozygous rats. Collecting duct luminal membranes of ADH-treated homozygotes showed intramembranous particle clusters (117 ± 17/100 μm2) that were loosely packed and that occurred on both exoplasmic (E) and protoplasmic (P) faces. Untreated, control homozygous rats had significantly less (3 ± 1/100 μm2) clusters. Changes similar to those seen in ADH-treated rats were observed in water-deprived Wistar rats. The clustered particles differed from those seen in ADH-treated amphibian urinary bladder in that the latter occurred only on the P face and were more densely packed. Nevertheless, our observations suggest a common membrane effect for ADH action that may apply in mammals and amphibia alike. freeze-fracture; Brattleboro homozygous rats; membrane particle clusters Submitted on March 6, 1978 Accepted on July 14, 1978


1990 ◽  
Vol 14 (7) ◽  
pp. 601-612 ◽  
Author(s):  
W DAVIS ◽  
K SCHMID ◽  
J HUETTNER ◽  
G FARMER ◽  
B JACOBY ◽  
...  

1987 ◽  
Vol 218 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Walter L. Davis ◽  
Ruth Gwendolyn Jones ◽  
H. K. Hagler ◽  
Gene R. Farmer ◽  
David B. P. Goodman

Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.


Sign in / Sign up

Export Citation Format

Share Document