Angiotensin-mediated alterations in nephron function in Goldblatt hypertensive rats

1982 ◽  
Vol 243 (6) ◽  
pp. F553-F560 ◽  
Author(s):  
W. C. Huang ◽  
D. W. Ploth ◽  
L. G. Navar

The present study was performed to evaluate superficial nephron responses of the nonclipped kidney to angiotensin I converting enzyme inhibitor (CEI) (SQ 20,881, 3 mg . kg-1 . h-1) in two-kidney, one-clip Goldblatt hypertensive (GH) rats. Late proximal and early distal tubule collections were obtained before and during CEI. Significant increases in glomerular filtration rate, urine flow, sodium excretion, proximal and distal tubule flow rates, and single nephron glomerular filtration rate (from 24.6 +/- 1.7 to 27.5 +/- 1.6 nl/min) occurred despite reductions in arterial blood pressure (from 160 +/- 5 to 137 +/- 6 mmHg) during CEI. Proximal tubule absolute and fractional reabsorption of fluid, chloride, and total solute decreased significantly. In the nephron segment between the two collection sites, there were increases in absolute but decreases in fractional reabsorption. At the distal tubule level, fractional reabsorption but not absolute reabsorption decreased significantly. Proximal and distal tubule hydrostatic pressures increased significantly while peritubular capillary pressure decreased slightly. Responses following inhibition of angiotensin II formation suggest that there exists an angiotensin II-mediated enhancement in tubular reabsorption in the nonclipped kidney of Goldblatt hypertensive rats.

1981 ◽  
Vol 241 (6) ◽  
pp. F612-F617
Author(s):  
E. J. Braun ◽  
D. R. Roy ◽  
R. L. Jamison

A micropuncture study of Perognathus penicillatus, a small rodent native to the deserts of the southwestern United States was performed to evaluate the function of the superficial nephron. Data are reported for 12 animals of 17 g average body wt. Mean glomerular filtration rate was 475 +/- 73 microliter X min-1 X g kidney wt-1. Urine osmolality averaged 1,154 +/- 197 mosmol/kg H2O. Single nephron glomerular filtration rate averaged 43 nl X min-1 X g kidney wt-1 in the proximal tubule and 48 in the distal tubule, values that are not significantly different. In terms of the filtered load remaining unreabsorbed at the end of the accessible proximal tubule, the average percentages were 46 water, 48 total solute, 45 sodium, 56 phosphorus, 62 potassium, 71 magnesium, and 54 calcium. The concentrations of potassium and magnesium in fluid samples increased significantly along the proximal tubule. Approximately at the midpoint of the distal tubule, fractional delivery of water, 13.1%, was greater than that for total solute, 10%, or sodium, 7%, indicating that the intervening segment of nephron reabsorbed solute and sodium in excess of water. The function of the superficial nephron resembles that of species previously investigated except for potassium reabsorption in the proximal convoluted tubule.


1986 ◽  
Vol 250 (6) ◽  
pp. F967-F974 ◽  
Author(s):  
U. Boberg ◽  
A. E. Persson

Studies of whole-kidney function and micropuncture measurements in superficial nephrons were performed to investigate the role of the tubuloglomerular feedback (TGF) in the excretion of salt and water in hydropenic and volume-expanded rats of the spontaneously hypertensive Milan strain (MHS). The rats were 3.5-5 and 5-7 wk old, and age-matched animals from the Milan normotensive strain (MNS) served as controls. There was no difference in mean arterial blood pressure (Pa) between the 3.5- to 5-wk-old prehypertensive MHS (MHSp) and MNS rats, but the glomerular filtration rate (GFR) was higher in MHSp than in MNS [1.35 vs. 0.80 ml X min-1 X g kidney wt (KW)-1, P less than 0.01]. The distal single-nephron glomerular filtration rate (SNGFR) was also higher in MHSp than in MNS (28.6 vs. 20.2 nl X min-1 X g KW-1, P less than 0.05). TGF was determined from both stop-flow pressure response and proximal and distal SNGFR. It was found that MHSp exhibited essentially no TGF response. During development of hypertension 5- to 7-wk-old MHS (MHSd) had a higher Pa than MNS (120 vs. 98 mmHg, P less than 0.01). Normally GFR and SNGFR increase with age, and such was the case with MNS (0.8 to 1.02 ml X min-1 X g KW-1 and 20.2 to 23.4 nl X min-1 X g KW-1), but in MHSd there was a decrease in both GFR and SNGFR with age (1.35 to 1.10 ml X min-1 X g KW-1 and 28.3 to 18.3 nl X min-1 X g KW-1).(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 252 (6) ◽  
pp. F1016-F1021 ◽  
Author(s):  
B. Stanton ◽  
E. Puglisi ◽  
M. Gellai

Free-flow micropuncture and clearance studies were conducted in male Sprague-Dawley rats to investigate the effects of alpha 2-adrenoceptor stimulation on Na+, K+, and water transport along the nephron. Intravenous infusion of the selective alpha 2-adrenoceptor agonist B-HT 933 at 1 mg X kg-1 X h-1 increased urinary flow rate from 16.2 +/- 3.6 to 84.8 +/- 11.9 microliter/min, fractional excretion of Na+ from 1.36 +/- 0.31 to 3.57 +/- 0.52%, and fractional excretion of K+ from 26.9 +/- 3.0 to 42.3 +/- 2.2%, The diuresis, saluresis, and kaliuresis were not the result of increases in glomerular filtration rate or mean arterial blood pressure. Urine osmolality decreased from 1,126 +/- 177 to 325 +/- 33 mosmol/kg water and in 8 of the 11 animals studied B-HT 933 decreased urine osmolality to hyposmotic levels, suggesting a possible interaction between the alpha 2-adrenoceptor agonist and vasopressin. The alpha 2-adrenoceptor antagonist yohimbine (0.25/mg bolus, iv) inhibited the diuresis, saliuresis, and kaliuresis. In micropuncture studies, B-HT 933 was without effect on single-nephron glomerular filtration rate or on Na+, K+, and water transport along the superficial proximal tubule, loop of Henle, or distal tubule. Thus stimulation of alpha 2-adrenoceptors increases Na+, K+, and water excretion by inhibiting tubule reabsorption of these substances at nephron sites beyond the superficial distal tubule, most likely by the collecting tubule.


1978 ◽  
Vol 234 (5) ◽  
pp. F357-F370 ◽  
Author(s):  
L. G. Navar

The phenomenon of renal autoregulation is often thought to relate only to the manner in which the kidney responds to changes in arterial pressure. This review presents a more comprehensive description of the process based on the intrinsic renal vascular responses to changes in arterial pressure, venous pressure, ureteral pressure, and plasma colloid osmotic pressure. Regulation of glomerular filtration rate (GFR), or some function thereof, is the feature most consistently observed. More specifically, in response to external manipulations that change GFR, autonomous changes in renal vascular resistance tend to return GFR back towards normal. The bulk of the evidence suggests that the requisite renal vascular resistance alterations occur predominately at preglomerular segments. Most of the whole kidney autoregulatory responses can be explained on the basis of the distal tubule-glomerular feedback hypothesis, thought to be mediated by the macula densa-juxtaglomerular complex, which states that increases in distal volume delivery lead to increases in afferent arteriolar resistance while reduced distal delivery leads to afferent arteriolar dilation. Micropuncture data have demonstrated that interruption of distal volume delivery prevents single nephrons from autoregulating GFR and glomerular pressure. Also, single nephron glomerular filtration rate (SNGFR) based on proximal collections is higher than SNGFR measured by distal collections or with an indicator-dilution technique. Studies utilized direct microperfusion of the distal nephron from a late proximal tubule site have demonstrated that SNGFR and glomerular pressure decrease in response to increases in distal nephron perfusion rate. Although experiments in rats have been interpreted as indicating that distal chloride concentration and/or reabsorption most likely mediate the feedback responses, recent studies in dogs have demonstrated that feedback responses can be consistently obtained with nonelectrolyte perfusion solutions. These latter studies suggest that the feedback response may be sensitive to some function of total solute delivery or concentration. At present, there is no clear understanding of the intracellular events that link the compositional alterations occurring within the early distal tubule to the final effector system.


1989 ◽  
Vol 257 (1) ◽  
pp. F137-F144 ◽  
Author(s):  
M. D. Okusa ◽  
A. E. Persson ◽  
F. S. Wright

We examined the effect of chlorothiazide (CTZ) on the tubuloglomerular (TG) feedback system in anesthetized Sprague-Dawley rats. During infusion of CTZ (0.25 mg.kg body wt-1.min-1) we found that whole kidney glomerular filtration rate (GFR) decreased by 19% (1.0 +/- 0.1 vs. 0.8 +/- 0.1 ml/min; P less than 0.005). To asses the activity of the TG feedback system during CTZ administration we compared measurements of single-nephron (SN)GFR from tubule fluid sampled separately at proximal and distal sites. During CTZ administration, distally measured SNGFR decreased significantly by 16% (27.3 +/- 1.3 vs. 22.9 +/- 1.1 nl/min; P less than 0.025), whereas proximally measured SNGFR was unchanged. Thus the difference in SNGFR between proximal and distal determination increased during CTZ infusion (4.7 +/- 0.7 vs. 7.7 +/- 0.7 nl/min; P less than 0.025), indicating that CTZ suppresses GFR by TG feedback. Na, K, and Cl concentrations measured in the late proximal tubule fluid during control and CTZ infusions were similar. In early distal tubule fluid samples K and Cl concentrations were unaffected by CTZ infusion, whereas Na concentrations increased by 32% (47.9 +/- 2.7 vs. 63.1 +/- 2.4 mM; P less than 0.001). Proximal tubule microperfusion with 1.0 mM CTZ decreased transport rates of Na and water by approximately 40%, whereas the transport rate of Cl was not affected. In conclusion our results indicate that CTZ reduces GFR by activating TG feedback. The mechanism by which this occurs is in part due to an increase in the strength of the signal.


1981 ◽  
Vol 241 (3) ◽  
pp. R190-R197 ◽  
Author(s):  
J. E. Hall ◽  
T. G. Coleman ◽  
A. C. Guyton ◽  
P. R. Kastner ◽  
J. P. Granger

Previous studies from our laboratory have provided evidence that the renin-angiotensin system plays an important role in controlling glomerular filtration rate (GFR) through an efferent arteriolar vasoconstrictor mechanism; however, the relative importance of circulating versus intrarenally formed angiotensin II (ANG II) in this control has not been determined. In the present study, the role of circulating ANG II in regulating GFR during reduced renal artery pressure (RAP) was examined in sodium-depleted dogs. After 90 min of infusion of the angiotensin-converting enzyme inhibitor SQ 14225, which presumably inhibited formation of both circulating and intrarenal ANG II, reduction of RAP to 81 +/- 2 mmHg resulted in marked decreases in GFR, filtration fraction (FF), and calculated efferent arteriolar resistance (RE), whereas renal blood flow (RBF) was maintained approximately 40% above initial control levels determined before SQ 14225 infusion. Replacement of circulating ANG II during SQ 14225 infusion, by intravenous infusion of ANG II at rates that decreased RBF to control levels, increased GFR, FF, and RE to levels not significantly different from control while RAP was maintained constant by aortic constriction. These observations suggest that circulating ANG II plays an important role in regulating RE and GFR during reductions in RAP. The importance of intrarenally formed ANG II in controlling GFR remains to be determined.


2017 ◽  
Vol 313 (1) ◽  
pp. F9-F19 ◽  
Author(s):  
Martha Franco ◽  
Rocío Bautista-Pérez ◽  
Agustina Cano-Martínez ◽  
Ursino Pacheco ◽  
José Santamaría ◽  
...  

Deleterious effects of purinergic P2X1and P2X7receptors (P2XRs) in ANG II-dependent hypertension include increased renal vascular resistance, and impaired autoregulation and pressure natriuresis. However, their specific effects on the determinants of glomerular hemodynamics remain incompletely delineated. To investigate the P2XR contributions to altered glomerular hemodynamics in hypertension, the effects of acute blockade of P2X1R, P2X7R, and P2X4R with NF449, A438079, and PSB12054, respectively, were evaluated in ANG II-infused rats (435 ng·kg−1·min−1). P2X1R or P2X7R blockade reduced afferent (6.85 ± 1.05 vs. 2.37 ± 0.20 dyn·s−1·cm−5) and efferent (2.85 ± 0.38 vs. 0.99 ± 0.07 dyn·s−1·cm−5) arteriolar resistances, leading to increases in glomerular plasma flow (75.82 ± 5.58 vs. 206.7 ± 16.38 nl/min), ultrafiltration coefficient (0.0198 ± 0.0024 vs. 0.0512 ± 0.0046 nl·min−1·mmHg−1), and single-nephron glomerular filtration rate (22.73 ± 2.02 vs. 51.56 ± 3.87 nl/min) to near normal values. Blockade of P2X4R did not elicit effects in hypertensive rats. In normotensive sham-operated rats, only the P2X1R antagonist caused an increase plasma flow and single-nephron glomerular filtration rate, whereas the P2X4R antagonist induced glomerular vasoconstriction that was consistent with evidence that P2X4R stimulation increases release of nitric oxide from endothelial cells. Mean arterial pressure remained unchanged in both hypertensive and normotensive groups. Western blot analysis showed overexpression of P2X1R, P2X7R, and P2X4R proteins in hypertensive rats. Whereas it has been generally assumed that the altered glomerular vascular resistances in ANG II hypertension are due to AT1receptor-mediated vasoconstriction, these data indicate a predominant P2X1R and P2X7R control of glomerular hemodynamics in ANG II hypertension.


1980 ◽  
Vol 239 (5) ◽  
pp. R509-R514 ◽  
Author(s):  
J. A. Brown ◽  
J. A. Oliver ◽  
I. W. Henderson ◽  
B. A. Jackson

Glomerular filtration rate (GFR), urine flow (UV), renal tubular transport maximum for glucose (TMG), and single nephron glomerular filtration rate (SNGFR), determined in anesthetized norepinephrine-infused trout (Salmo gairdneri), were 18.51 +/- 5.78 microliter x min-1 x kg body wt-1, 5.31 +/- 1.38 microliter x min-1 x kg body wt-1, 105.21 +/- 46.84 microgram x min-1 x kg body wt-1, and 3.74 +/- 1.12 nl/min, respectively, when in seawater (SW) and 140.39 +/- 17.24, 76.38 +/- 10.41, 626.16 +/- 77.46, and 1.31 +/- 0.20 in freshwater (FW). Angiotensin II infusions, to reduce UV, GFR, and TMG by 50%, had no effect on the average SNGFR of FW trout, but reduced that of SW fish to 1.42 +/- 0.19 nl/min. Infusions of 20% ferrocyanide, visualized as Prussian blue (PB), identified three glomerular populations: filtering (F) with PB in glomerular vessels and tubular lumen; nonfiltering (NF)--PB in glomerular vessels only; nonperfused (NP)--no PB associated with the nephron. SW and FW kidneys contained about 40% NF tubules. In FW, 45% were F tubules compared with 5% in SW, whereas NP tubules comprised 51% of SW tubules and 13% of FW. During angiotensin II infusions the distributions were 9% and 46% NF in FW and 6% F and 12% NF in SW trout.


1976 ◽  
Vol 51 (s3) ◽  
pp. 105s-107s
Author(s):  
J. Schnermann ◽  
D. W. Ploth ◽  
H. Dahlheim

1. Reduction of renal perfusion pressure from 133 mmHg to 117 mmHg in control rats did not induce a significant change of kidney glomerular filtration rate (GFR) or nephron GFR determined in distal tubules. In contrast, nephron GFR measured in proximal tubular segments (NGFR-P) fell significantly. 2. Qualitatively the same response of filtration rate to changes of arterial blood pressure was found in the chronically clipped kidneys of Goldblatt hypertensive rats after acute removal of the clip. 3. In contrast, autoregulation of kidney GFR, NGFR-D and NGFR-P was abolished in the contralateral kidneys of Goldblatt hypertensive rats. 4. Microperfusion studies showed that tubuloglomerular feedback regulation of NGFR was present in the renin-rich ischaemic kidneys of Goldblatt rats after removal of the constricting clip, but greatly attenuated in the renin-depleted contralateral kidneys. 5. These data indicate that tubuloglomerular feedback participates in establishing renal autoregulation, possibly by mediation of the renin-angiotensin system.


Sign in / Sign up

Export Citation Format

Share Document