Blunted natriuresis to atrial natriuretic peptide in chronic sodium-retaining disorders

1987 ◽  
Vol 252 (5) ◽  
pp. F865-F871 ◽  
Author(s):  
J. P. Koepke ◽  
G. F. DiBona

Renal responses to atrial natriuretic peptide were examined in conscious dogs with congestive heart failure (tricuspid insufficiency) and in conscious rats with nephrotic syndrome (adriamycin). Heart-failure dogs displayed elevated atrial pressure and heart weights, blunted natriuresis to a saline load, and ascites. Nephrotic rats displayed proteinuria, hypoproteinemia, sodium retention, and ascites. In control animals, atrial natriuretic peptide increased absolute and fractional urine flow rate and urinary sodium excretion. Although atrial natriuretic peptide increased absolute and fractional urine flow rate and urinary sodium excretion in conscious heart-failure dogs and nephrotic rats, the responses were markedly blunted. In heart-failure dogs, infusion of atrial natriuretic peptide increased plasma concentrations of norepinephrine and epinephrine. In nephrotic rats, renal denervation reversed the blunted diuretic and natriuretic responses to atrial natriuretic peptide. Mean arterial pressure, glomerular filtration rate, and p-aminohippurate clearance were affected similarly by atrial natriuretic peptide in heart-failure dogs or nephrotic rats vs. control animals. Conscious congestive heart-failure dogs and conscious nephrotic rats have blunted diuretic and natriuretic responses to atrial natriuretic peptide.

1989 ◽  
Vol 257 (1) ◽  
pp. R162-R167 ◽  
Author(s):  
T. D. Williams ◽  
K. P. Walsh ◽  
R. Canepa-Anson ◽  
M. I. Noble ◽  
A. J. Drake-Holland ◽  
...  

The effects of rapid atrial pacing on central hemodynamics, plasma hormones, and renal function were investigated in eight control and nine cardiac-denervated dogs under chloralose anesthesia. Pacing at approximately 250 ppm for 60 min caused similar increases in pulmonary wedge and right atrial pressures, systemic vascular resistance, and plasma atrial natriuretic peptide (ANP) in both groups. In control dogs, pacing produced a fall in both plasma vasopressin (AVP) and plasma renin activity (PRA) and a rise in urine flow rate associated with an increase in free water but not sodium clearance. In contrast, in cardiac-denervated dogs, both plasma AVP and PRA increased during pacing; urine flow rate did not change, and marked sodium retention occurred. This study supports the concept that the increase in urine flow during rapid atrial pacing is mediated by inhibition of renin and AVP secretion through intact cardiac nerves. The secretion of ANP is unaffected by cardiac denervation. The natriuretic and vasodilator actions of high plasma ANP concentrations during rapid atrial pacing can be inhibited either by neurally mediated cardiorenal effects in normal animals or by stimulation of the renin-angiotensin system after cardiac denervation.


1987 ◽  
Vol 253 (5) ◽  
pp. F969-F975 ◽  
Author(s):  
T. A. Fried ◽  
M. A. Ayon ◽  
G. McDonald ◽  
A. Lau ◽  
T. Inagami ◽  
...  

This study examined the relationship between right atrial pressure (RAP), urine flow rate, sodium excretion rate, and plasma atrial natriuretic peptide (ANP) levels after an acute Ringer expansion. Two groups of rats had their RAP monitored and balloon catheters placed in their thoracic inferior venae cavae. In one group the balloon remained deflated, and in the second group the balloon was inflated during the volume expansion in an attempt to prevent the rise in RAP. The peak RAP was 7.3 +/- 0.8 mmHg when the balloon remained deflated and 3.5 +/- 0.6 mmHg in the group with the balloon catheter inflated (P less than 0.005). The corresponding peak ANP levels were 682 +/- 140 and 223 +/- 40 pg/ml. There was a significant correlation between the peak RAP and ANP levels (r = 0.754; P less than 0.05). The inflation of the balloon catheter significantly decreased the urine flow rate and the urine sodium excretion rate. A final group of animals had 200 microliters of rabbit serum containing antibody to ANP infused before the volume expansion. The antibody-treated animals had significantly lower urine flow and sodium excretion rates than nonantibody-treated control rats. We conclude that ANP is one of the factors which allows the rat to excrete an acute Ringer expansion.


1989 ◽  
Vol 257 (3) ◽  
pp. R641-R646 ◽  
Author(s):  
M. Awazu ◽  
T. Imada ◽  
V. Kon ◽  
T. Inagami ◽  
I. Ichikawa

Effects of purified rabbit anti-rat 25-amino acid atrial natriuretic peptide (ANP) immunoglobulin G (IgG) on renal sodium excretion and glomerular filtration rate were studied in a rat model of congestive heart failure (CHF) having high circulating ANP levels. Bolus injection of anti-ANP into anesthetized rats with surgically induced myocardial infarction (MI) significantly and markedly depressed both absolute and fractional urinary excretion of sodium without affecting mean arterial pressure or glomerular filtration rate. By contrast, anti-ANP failed to affect these renal functions in normal or acutely water-deprived rats. Nonimmune IgG did not affect renal function in MI rats. These results indicate that high circulating ANP plays an important role in sodium homeostasis of congestive heart failure: by promoting sodium excretion, ANP opposes the tendency of sodium retention characteristic of CHF.


2001 ◽  
Vol 49 (10) ◽  
pp. 1293-1300 ◽  
Author(s):  
Gad M. Bialik ◽  
Zaid A. Abassi ◽  
Ilan Hammel ◽  
Joseph Winaver ◽  
Dina Lewinson

The natriuretic peptides are believed to play an important role in the pathophysiology of congestive heart failure (CHF). We utilized a quantitative cytomorphometric method, using double immunocytochemical labeling, to assess the characteristics of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in atrial granules in an experimental model of rats with CHF induced by aortocaval fistula. Rats with CHF were further divided into decompensated (sodium-retaining) and compensated (sodium-excreting) subgroups and compared with a sham-operated control group. A total of 947 granules in myocytes in the right atrium were analyzed, using electron microscopy and a computerized analysis system. Decompensated CHF was associated with alterations in the modal nature of granule content packing, as depicted by moving bin analysis, and in the granule density of both peptides. In control rats, the mean density of gold particles attached to both peptides was 347.0 ± 103.6 and 306.3 ± 89.9 gold particles/μm2 for ANP and BNP, respectively. Similar mean density was revealed in the compensated rats (390.6 ± 81.0 and 351.3 ± 62.1 gold particles/μm2 for ANP and BNP, respectively). However, in rats with decompensated CHF, a significant decrease in the mean density of gold particles was observed (141.6 ± 67.3 and 158.0 ± 71.2 gold particles/μm2 for ANP and BNP, respectively; p < 0.05 compared with compensated rats, for both ANP and BNP). The ANP:BNP ratio did not differ between groups. These findings indicate that the development of decompensated CHF in rats with aortocaval fistula is associated with a marked decrease in the density of both peptides in atrial granules, as well as in alterations in the quantal nature of granule formation. The data further suggest that both peptides, ANP and BNP, may be regulated in the atrium by a common secretory mechanism in CHF.


1990 ◽  
Vol 65 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Michael A. Fifer ◽  
Cesar R. Molina ◽  
Antonio C. Quiroz ◽  
Thomas D. Giles ◽  
Howard C. Herrmann ◽  
...  

1996 ◽  
Vol 60 (12) ◽  
pp. 909-916 ◽  
Author(s):  
Masahiko Kato ◽  
Toru Kinugawa ◽  
Hiroki Omodani ◽  
Shuichi Osaki ◽  
Kazuhide Ogino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document