Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump

1993 ◽  
Vol 264 (3) ◽  
pp. F557-F564 ◽  
Author(s):  
R. B. Silver ◽  
G. Frindt ◽  
E. E. Windhager ◽  
L. G. Palmer

Na channels in the apical membrane of the rat renal cortical collecting tubule were studied using the patch-clamp technique. Channel activity was monitored in cell-attached patches on tubules that were split open to expose the luminal surface. Channel number (N), open probability (Po), and currents (i) were measured at 37 degrees C during continuous superfusion of the tubule. Addition of ouabain (1 mM) to the superfusate to increase cell Na resulted in a decrease in the mean number of open channels (NPo) to less than 20% of control values within 2 min. This effect was not reversible within 5 min after removal of ouabain. There was, in addition, a parallel decrease in i. The mechanism of inhibiton appeared to involve increased intracellular Ca (Cai). Cai was measured using the fluorescence of the Ca indicator fura-2 in principal cells of split tubules under conditions identical to those used for electrical measurements. Cai increased from a basal level (153 +/- 36 nM) to a peak level (588 +/- 53 nM) approximately 3 min after the addition of ouabain. When a Ca-free superfusate was used, ouabain did not increase Cai or decrease NPo, although the decrease in i was similar to that observed in Ca-containing solutions. Similar increases in Cai were elicited by the Ca ionophore ionomycin (5 microM) in the presence of 0.1 mM extracellular Ca. This maneuver also resulted in a decrease in NPo which was similar to that observed in the presence of ouabain. Ouabain had no observable effect on cell pH.(ABSTRACT TRUNCATED AT 250 WORDS)

1995 ◽  
Vol 268 (3) ◽  
pp. F480-F489 ◽  
Author(s):  
G. Frindt ◽  
R. B. Silver ◽  
E. E. Windhager ◽  
L. G. Palmer

The effects of exogenous adenosine 3',5'-cyclic monophosphate (cAMP) on apical Na channels in the rat cortical collecting tubule were studied using the patch-clamp technique and fura 2 fluorescence measurements of intracellular Ca2+ (Ca2+i). When the permeant analogue, 8-(4-chlorophenylthio)-cAMP (CPT-cAMP, 200 microM), was added to the superfusate during recording from cell-attached patches, both the mean number of open channels (NPo) and the single-channel current (i) decreased within 3 min. When the superfusate also contained amiloride (10 microM), there was no effect of CPT-cAMP on either NPo or i. When CPT-cAMP was added to the bath before formation of the patch, the density of conducting channels was increased from 10 +/- 2 to 37 +/- 6 per patch, as estimated by analysis of channel-induced noise. This suggests that cAMP increases open-channel density in the regions of the apical membrane outside the patch but not within the patch. Channels already active in the patch before stimulation with the nucleotide are subject to feedback inhibition secondary to increased Na entry into the cell. CPT-cAMP increased Ca2+i from 104 to 198 nM. This increase in Ca2+i was abolished by benzamil (0.5 microM) or by low extracellular Ca2+. The cAMP-dependent reduction in NPo was still observed in Ca(2+)-free medium, indicating that a rise in Ca2+i was not essential for the feedback response. The decrease in NPo was attenuated, however, when cAMP was added in the absence of Ca2+ and in the presence of ouabain (1 mM) in the superfusate.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (2) ◽  
pp. F333-F339 ◽  
Author(s):  
L. G. Palmer ◽  
G. Frindt

The patch-clamp technique was used to identify individual Na channels in the apical membrane of the rat cortical collecting tubule and to evaluate the effects of cytoplasmic Ca2+ and pH on channel activity. In excised, inside-out patches, the probability of a channels's being open (P0) increased with alkalinization of the solution bathing the cytoplasmic side of the patch. Estimates of P0 were 0.05 at pH 6.4, 0.19 at pH 6.9, and 0.41 at pH 7.4. Varying the free Ca2+ concentration of the solution bathing the cytoplasmic side of the patch had no measurable effect on P0. In cell-attached patches, addition of the Ca2+ ionophore ionomycin to the solution bathing the tubules to a final concentration of either 1 or 10 microM decreased channel activity measured as the mean number of open channels (no. open) = n X P0 where n is the number of channels in the membrane. (no. open) was significantly decreased at 3 min after addition of ionomycin and fell to less than 10% of control values after 10 min incubation. There was no fall in (no. open) either in time controls or in tubules exposed to ionomycin in the presence of low bath Ca2+ concentrations [no added Ca2+ with 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA)]. The results suggest that cytoplasmic pH can directly influence channel activity. Cytoplasmic Ca2+ does not interact directly with the channels, but increased cytoplasmic Ca2+ produces a fall in channel activity through an indirect process.


1994 ◽  
Vol 104 (4) ◽  
pp. 693-710 ◽  
Author(s):  
L G Palmer ◽  
L Antonian ◽  
G Frindt

The patch-clamp technique was used to study the properties and the density of conducting K and Na channels in the apical membrane of rat cortical collecting tubule. The predominant K channel observed in cell-attached patches (SK channels) had an outward single-channel conductance (with LiCl in the pipette) of 10 pS. The inward conductance (with KCl in the pipette) was 42 pS. The channel had a high open probability that increased with depolarization. Kinetic analysis indicated the presence of a single open state and two closed states. Increasing K intake by maintaining animals on a high K diet for 12-16 d increased the number of SK channels per patch by threefold (0.7-2.0/patch) over control levels. In addition, conducting Na-selective channels, which were not observed in control animals, were seen at low density (0.5/patch). These channels had properties similar to those observed when the animals were on a low Na diet, except that the mean open probability (0.84) was higher. In other experiments, the whole-cell patch clamp technique was used to measure Na channel activity (as amiloride-sensitive current, INa) and Na pump activity (as ouabain-sensitive current, Ipump). In animals on a high K diet, INa was greater than in controls but much less than in rats on a low Na diet. Ipump was greater after K loading than in controls or Na-depleted animals. These K diet-dependent effects were not accompanied by a significant increase in plasma aldosterone concentrations. To further investigate the relationship between K channel activity and mineralocorticoids, rats were maintained on a low Na diet to increase endogenous aldosterone secretion. Under these conditions, no increase in SK channel density was observed, although there was a large increase in the number of Na channels (to 2.7/patch). Aldosterone was also administered exogenously through osmotic minipumps. As with the low Na diet, there was no change in the density of conducting SK channels, although Na channel activity was induced. These results suggest that SK channels, Na channels and Na/K pumps are regulated during changes in K intake by factors other than aldosterone.


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


1993 ◽  
Vol 264 (3) ◽  
pp. F565-F574 ◽  
Author(s):  
G. Frindt ◽  
R. B. Silver ◽  
E. E. Windhager ◽  
L. G. Palmer

Na channels in the apical membrane of the rat renal cortical collecting tubule were studied using the patch-clamp technique. Channel activity was monitored in cell-attached patches on tubules that were split open to expose the luminal surface. Channel number (N), open probability (Po), and single-channel currents (i) were measured at 37 degrees C during continuous superfusion of the tubule. Addition of amiloride (10 microM) or benzamil (0.5 microM) to the superfusate resulted in a twofold increase in the mean number of open channels (NPo) after 2 min. The effect closely paralleled an increase in i, presumably reflecting membrane hyperpolarization. The effects on both i and NPo reversed within 3 min after removal of amiloride. The increase in NPo was accounted for, at least in part, by an increase in Po. Several cellular events may contribute to this phenomenon. Channels could be activated directly by membrane hyperpolarization and by cell shrinkage, both of which are known to occur during acute administration of amiloride. In addition, benzamil elicited a 30% decrease in intracellular Ca compared with control levels as measured by fura-2 fluorescence. A comparable decrease observed after reducing extracellular Ca did not increase NPo. No changes in cell pH, measured with 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein fluorescence, were observed. The modulation of channel Po by the rate of Na entry into the cell will act as a feedback mechanism to maintain cellular ion homeostasis, and this may also serve to distribute Na reabsorption more evenly along the nephron.


1993 ◽  
Vol 102 (1) ◽  
pp. 25-42 ◽  
Author(s):  
J Pácha ◽  
G Frindt ◽  
L Antonian ◽  
R B Silver ◽  
L G Palmer

The activity of apical membrane Na channels in the rat cortical collecting tubule was studied during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet or the diuretic furosemide. Tubules were isolated and split open to expose the luminal membrane surface. Induction of Na channel activity was studied in cell-attached patches of the split tubules. No activity was observed with control animals on a normal diet. Channel activity could be induced by putting the animals on the low-Na diet for at least 48 h. The mean number of open channels per patch (NPo) was maximal after 1 wk on low Na. Channels were also induced within 3 h after injection of furosemide (20 mg/kg body wt per d). NPo was maximal 48 h after the first injection. In both cases, increases in NPo were primarily due to increases in the number of channels per patch (N) at a constant open probability (Po). With salt depletion or furosemide injection NPo is a saturable function of aldosterone concentration with half-maximal activity at approximately 8 nM. When animals were salt repleted after 1-2 wk of salt depletion, both plasma aldosterone and NPo fell markedly within 6 h. NPo continued to decrease over the next 14 h, while plasma aldosterone rebounded partially. Channel activity may be dissociated from aldosterone concentrations under conditions of salt repletion.


1996 ◽  
Vol 270 (3) ◽  
pp. F391-F397 ◽  
Author(s):  
L. M. Satlin ◽  
L. G. Palmer

Net Na+ absorption in microperfused rabbit cortical collecting ducts (CCDs) is low during the 1st wk of postnatal life, increasing substantially thereafter [L. M. Satlin. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F57-F65, 1994]. To establish whether the low rate of Na+ absorption observed immediately after birth is due to a low apical Na+ permeability of the neonatal principal cell, we used the patch-clamp technique in split-open CCDs isolated from maturing rabbits to estimate conductance, number (N), and open probability (Po) of apical Na+ channels in principal cells. With LiCl in the pipette and a NaCl or potassium gluconate solution, warmed to 37 degrees C, in the bath, inward currents with a conductance of approximately 11 pS (n = 23) were observed in 17% of cell-attached patches at 1 wk, 41% of patches at 2 wk, and 43% of patches at 5 wk. The mean N per patch in the 1st wk (0.22 +/- 0.09; n = 36) was significantly less than that observed in the 2nd (1.38 +/- 0.39; n = 34) and 5th (1.24 +/- 0.37; n = 21) wk of life. Po, studied at positive pipette voltages, was significantly lower in the 1st wk (0.085 +/- 0.035; n = 5) than in the 2nd wk (0.345 +/- 0.063; n = 9) and 5th wk (0.291 +/- 0.058; n = 4). To confirm that the 11-pS channel represented the amiloride-sensitive apical Na+ channel, cell-attached patches in CCDs isolated from 2-wk-old rabbits were studied with 0.5 microM amiloride added to the LiCl pipette solution. Amiloride led to > 90% reductions in mean open and closed times of the 11-pS conductance, consistent with blockade of the channel. These data indicate that N and Po of apical amiloride-sensitive Na+ channels in principal cells increase significantly after birth.


1996 ◽  
Vol 270 (5) ◽  
pp. F798-F805 ◽  
Author(s):  
H. Ma ◽  
B. N. Ling

To investigate the effects of luminal adenosine on amiloride-sensitive Na+ channels, we applied the cell-attached patch-clamp technique to A6 distal nephron cells. Exposure to luminal 30 nM adenosine increased number of channels x open probability (NP0) from 0.38 +/- 0.08 to 0.77 +/- 0.09 (means +/- SE; P < 0.01, n = 17). Luminal exposure to an A1-receptor antagonist (30 nM 8-cyclopentyl-1,3-dipropylxanthine) abolished (P = 0.17, n = 11), whereas an A1 agonist (30 nM N6-cyclohexyladenosine) reproduced (P < 0.02, n = 6) the stimulatory effect of 30 nM adenosine. In contrast, higher concentrations of luminal adenosine (1 or 10 microM) decreased NP0 from 0.65 +/- 0.09 to 0.24 +/- 0.10 (P < 0.02, n = 11) and from 0.80 +/- 0.11 to 0.19 +/- 0.03 (P < 0.01, n = 8), respectively. Channel inhibition by high-dose luminal adenosine was abolished by an A2 antagonist (30 microM 3,7-dimethyl-1-propargylxanthine; P = 0.2, n = 10) and mimicked by an A2 agonist (100 nM CGS-21680 hydrochloride; P < 0.0005, n = 8). We conclude that 1) purinergic regulation of distal nephron Na+ channels is mediated by stimulatory apical A1 receptors and inhibitory apical A2 receptors; 2) basal urinary adenosine concentrations (in nM) would stimulate Na+ reabsorption, whereas higher urinary concentrations (in microM), e.g., renal ischemia and elevations in filtered NaCl load, would increase Na+ excretion; and 3) urinary adenosine may be involved in feedback regulation of distal nephron Na+ transport.


1994 ◽  
Vol 267 (5) ◽  
pp. C1414-C1425 ◽  
Author(s):  
K. E. Kokko ◽  
P. S. Matsumoto ◽  
B. N. Ling ◽  
D. C. Eaton

We studied the mechanisms by which prostaglandin E2 (PGE2) regulates amiloride-blockable 4-pS Na+ channels in A6 distal nephron cells. With each apical cell-attached patch acting as its own control, acute (3-6 min) basolateral, but not apical, exposure to 1 microM PGE2 inhibited Na+ channel activity by decreasing the open probability (Po). This PGE2-induced inhibition was attenuated by 30 min pretreatment with the protein kinase C (PKC) antagonists 1 microM staurosporine or 100 microM D-sphingosine but was insensitive to pertussis toxin (PTX). Furthermore, the time course for channel inhibition by acute PGE2 correlated with a transient increase in intracellular inositol 1,4,5-trisphosphate (IP3) levels. In contrast, after chronic (10-50 min) exposure of A6 cells to 1 microM basolateral PGE2, channel activity was stimulated compared with controls. This stimulation was due to an increase in the number of apical Na+ channels, similar to the effect of maneuvers that increase intracellular adenosine 3',5'-cyclic monophosphate (cAMP) levels in A6 cells (22). Indeed, chronic exposure to basolateral PGE2 correlated with a sustained increase in cAMP levels. In conclusion, 1) the regulation of apical 4-pS highly selective Na+ channel activity by basolateral PGE2 is a complicated biphasic process, which includes inhibition by acute PGE2 and stimulation by chronic PGE2 exposure; 2) acute PGE2 promotes a transient generation of IP3 which activates Ca(2+)-dependent PKC and promotes a decrease in Po; 3) chronic PGE2 promotes a sustained generation of cAMP that leads to an increase in channel density; and 4) both the acute and chronic effects of PGE2 on Na+ channels are PTX-insensitive processes.


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


Sign in / Sign up

Export Citation Format

Share Document