Effect of luminal angiotensin II on proximal tubule fluid transport: role of apical phospholipase A2

1994 ◽  
Vol 266 (2) ◽  
pp. F202-F209 ◽  
Author(s):  
L. Li ◽  
Y. P. Wang ◽  
A. W. Capparelli ◽  
O. D. Jo ◽  
N. Yanagawa

Recent micropuncture studies showed the existence of high concentrations of angiotensin II (ANG II) in proximal tubular fluid. In the present study, we have examined the effect of luminal ANG II, alone and in combination with peritubular ANG II, on fluid transport (JV) in the isolated perfused rabbit proximal convoluted tubule. In comparison with peritubular ANG II, luminal ANG II caused a similar but more potent biphasic effect on JV. At 10(-11) M, luminal ANG II maximally increased JV to 204 +/- 22% of the baseline compared with 142 +/- 10% by peritubular ANG II at 10(-10) M. At 10(-8) M, luminal ANG II suppressed JV to 9.7 +/- 16% of the baseline compared with 64 +/- 14% by peritubular ANG II. When luminal and peritubular ANG II were combined at concentrations that impose similar effect on JV, the effects of luminal and peritubular ANG II were not additive. However, when combined at concentrations that would otherwise impose opposing effects on JV, the stimulatory effect predominated. In support of the role of apical phospholipase A2 (PLA2) on the effect of luminal ANG II, ANG II stimulated PLA2 activity in isolated brush-border membrane vesicles, and addition of PLA2 inhibitor, mepacrine or dibucaine, to the luminal perfusate attenuated the effect of luminal ANG II on JV. In summary, these studies show a potent effect of luminal ANG II on proximal tubule JV involving activation of brush-border membrane PLA2. When combined, luminal and peritubular ANG II exert their effects in concert on proximal tubule JV.

1987 ◽  
Vol 252 (2) ◽  
pp. G229-G236 ◽  
Author(s):  
H. M. Said ◽  
F. K. Ghishan ◽  
R. Redha

Transport of folic acid (Pte-Glu) across the brush-border membrane of human intestine was studied using brush-border membrane vesicle (BBMV) technique. The transport of Pte-Glu was higher in BBMV prepared from the jejunum than those prepared from the ileum (0.70 +/- 0.05 and 0.14 +/- 0.02 pmol X mg protein-1 X 10 s-1, respectively). The transport of Pte-Glu appeared to be carrier mediated and was pH dependent and increased with decreasing incubation buffer pH; saturable (Kt = 1.69 microM, Vmax = 4.72 pmol X mg protein-1 X 10 s-1); inhibited in a competitive manner by the structural analogues 5-methyltetrahydrofolate, methotrexate, and 5-formyltetrahydrofolate (Ki = 2.2, 1.4 and 1.4 microM, respectively); not affected by inducing a relatively positive or negative intravesicular compartment; independent of Na+ gradient; and inhibited by 4,4'-diisothiocyanatostlibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor. The increase in Pte-Glu transport on decreasing incubation buffer pH appeared to be in part mediated through a direct effect of acidic pH on the transport carrier and in part through the pH gradient imposed by activating Pte-Glu-:OH- exchange and/or Pte-Glu-:H+ co-transport mechanisms. The important role of an acidic extravesicular environment in Pte-Glu transport is consistent with a role for the intestinal surface acid microclimate in folate transport. These results demonstrate that Pte-Glu transport in human BBMV occurs by a carrier-mediated system that is similar to that described for rat and rabbit intestinal BBMV.


1984 ◽  
Vol 247 (5) ◽  
pp. E616-E624 ◽  
Author(s):  
M. R. Hammerman ◽  
S. Rogers ◽  
V. A. Hansen ◽  
J. R. Gavin

Induction of hyperinsulinemia in dogs results in enhanced reabsorption of Pi from glomerular filtrate in the renal proximal tubule. To determine whether this may be a direct action of insulin mediated by altered transport characteristics of the proximal tubular brush border membrane, we measured Na+-dependent 32Pi transport in brush border membrane vesicles prepared from isolated proximal tubular segments originating from dog kidney that had been incubated with or without insulin. Specific high affinity binding sites for insulin were detected in proximal tubular segments. Increased initial rates (15 s) of Na+-dependent 32Pi transport were measured in brush border vesicles prepared from segments that had been incubated with insulin. This effect of insulin was concentration dependent over the range of 10(-10) to 10(-6) M insulin. These studies demonstrate the feasibility of using brush border vesicles prepared from proximal tubular segments to study solute transport. Our findings suggest that insulin-induced increased Pi reabsorption in the proximal tubule is mediated by a direct action of insulin on the proximal tubular cell, which results in increased Na+-Pi cotransport across the brush border membrane.


1985 ◽  
Vol 97 (5) ◽  
pp. 1461-1466 ◽  
Author(s):  
Kazuyuki HIRANO ◽  
Yuichi IIIZUMI ◽  
Yukio MORI ◽  
Kazumi TOYOSHI ◽  
Mamoru SUGIURA ◽  
...  

2019 ◽  
Vol 51 (4) ◽  
pp. 97-108 ◽  
Author(s):  
Xiao C. Li ◽  
Xiaowen Zheng ◽  
Xu Chen ◽  
Chunling Zhao ◽  
Dongmin Zhu ◽  
...  

The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.


2002 ◽  
Vol 283 (4) ◽  
pp. C1155-C1162 ◽  
Author(s):  
Steven M. Grassl

Membrane transport pathways mediating transcellular secretion of urate across the proximal tubule were investigated in brush-border membrane vesicles (BBMV) isolated from avian kidney. An inside-positive K diffusion potential induced a conductive uptake of urate to levels exceeding equilibrium. Protonophore-induced dissipation of membrane potential significantly reduced voltage-driven urate uptake. Conductive uptake of urate was inhibitor sensitive, substrate specific, and a saturable function of urate concentration. Urate uptake was trans-stimulated by urate and cis-inhibited by p-aminohippurate (PAH). Conductive uptake of PAH was cis-inhibited by urate. Urate uptake was unaffected by an outward α-ketoglutarate gradient. In the absence of a membrane potential, urate uptake was similar in the presence and absence of an imposed inside-alkaline pH gradient or an outward Cl gradient. These observations suggest a uniporter-mediated facilitated diffusion of urate as a pathway for passive efflux across the brush border membrane of urate-secreting proximal tubule cells.


Sign in / Sign up

Export Citation Format

Share Document