Laryngeal influences on breathing pattern and posterior cricoarytenoid muscle activity

1985 ◽  
Vol 58 (4) ◽  
pp. 1298-1304 ◽  
Author(s):  
F. B. Sant'Ambrogio ◽  
O. P. Mathew ◽  
W. D. Clark ◽  
G. Sant'Ambrogio

Receptors responding to transmural pressure, airflow, and contraction of laryngeal muscles have been previously identified in the larynx. To assess the relative contribution of these three types of receptors to the reflex changes in breathing pattern and upper airway patency, we studied diaphragmatic (DIA) and posterior cricoarytenoid muscle (PCA) activity in anesthetized dogs during spontaneous breathing and occluded efforts with and without bypassing the larynx. Inspiratory duration (TI) was longer, mean inspiratory slope (peak DIA/TI) was lower, and PCA activity was greater with upper airway occlusion than with tracheal occlusion (larynx bypassed). Bilateral section of the superior laryngeal nerves eliminated these differences. When respiratory airflow was diverted from the tracheostomy to the upper airway the only change attributable to laryngeal afferents was an increase in PCA activity. These results confirm the importance of the superior laryngeal nerves in the regulation of breathing pattern and upper airway patency and suggest a prevalent role for laryngeal negative pressure receptors.

1998 ◽  
Vol 84 (4) ◽  
pp. 1299-1304 ◽  
Author(s):  
Franca B. Sant’Ambrogio ◽  
Giuseppe Sant’Ambrogio ◽  
Kyungsoon Chung

Gastroesophageal reflux has been indicated as an etiopathological factor in disorders of the upper airway. Upper airway collapsing pressure stimulates pressure-responsive laryngeal receptors that reflexly increase the activity of upper airway abductor muscles. We studied, in anesthetized dogs, the effects of repeated laryngeal instillations of HCl-pepsin (HCl-P; pH = 2) on the response of laryngeal afferent endings and the posterior cricoarytenoid muscle (PCA) to negative pressure. The effect of negative pressure on receptor discharge or PCA activity was evaluated by comparing their response to upper airway (UAO) and tracheal occlusions (TO). It is only during UAO, but not during TO, that the larynx is subjected to negative transmural pressure. HCl-P instillation decreased the rate of discharge during UAO of the 10 laryngeal receptors studied from 56.4 ± 10.9 (SE) to 38.2 ± 9.2 impulses/s ( P < 0.05). With UAO, the peak PCA moving time average, normalized by dividing it by the peak values of esophageal pressure, decreased after six HCl-P trials from 4.29 ± 0.31 to 2.23 ± 0.18 ( n = 6; P < 0.05). The responses to TO of either receptors or PCA remained unaltered. We conclude that exposure of the laryngeal mucosa to HCl-P solutions, as it may occur with gastroesophageal reflux, impairs the patency-maintaining mechanisms provided by laryngeal sensory feedback. Inflammatory and necrotic alterations of the laryngeal mucosa are likely responsible for these effects.


1994 ◽  
Vol 77 (3) ◽  
pp. 1349-1354 ◽  
Author(s):  
M. J. Gdovin ◽  
S. L. Knuth ◽  
D. Bartlett

We monitored spontaneous bladder contractions (SBCs) in decerebrate vagotomized paralyzed ventilated cats while recording respiratory motor nerve activities and intravesical pressure under isovolumetric conditions. Phrenic nerve discharge diminished during SBCs, as did the activities of the hypoglossal nerve, the nasolabial branch of the facial nerve, and inspiratory (posterior cricoarytenoid) and expiratory (thyroarytenoid) branches of the recurrent laryngeal nerve. Hypoglossal activity was most strikingly reduced during SBCs, disappearing completely in some animals. The triangularis sterni nerve exhibited an initial decrease, followed by an increase in activity during SBCs, whereas the cranial iliohypogastric nerve showed increased activity. The changes in nerve activities during SBCs could also be elicited by passive distension of the bladder and were abolished by bilateral section of the pelvic nerves. These findings extend the understanding of reflexes originating from the urinary bladder to include a coordinated respiratory response and suggest that these reflexes may compromise upper airway patency under some conditions.


2003 ◽  
Vol 95 (2) ◽  
pp. 810-817 ◽  
Author(s):  
M. Yokoba ◽  
H. G. Hawes ◽  
P. A. Easton

The geniohyoid (Genio) upper airway muscle shows phasic, inspiratory electrical activity in awake humans but no activity and lengthening in anesthetized cats. There is no information about the mechanical action of the Genio, including length and shortening, in any awake, nonanesthetized mammal during respiration (or swallowing). Therefore, we studied four canines, mean weight 28.8 kg, 1.5 days after Genio implantation with sonomicrometry transducers and bipolar electromyogram (EMG) electrodes. Awake recordings of breathing pattern, muscle length and shortening, and EMG activity were made with the animal in the right lateral decubitus position during quiet resting, CO2-stimulated breathing, inspiratory-resisted breathing (80 cmH2O · l-1 · s), and airway occlusion. Genio length and activity were also measured during swallowing, when it shortened, showing a 9.31% change from resting length, and its EMG activity increased 6.44 V. During resting breathing, there was no phasic Genio EMG activity at all, and Genio showed virtually no movement during inspiration. During CO2-stimulated breathing, Genio showed minimal lengthening of only 0.07% change from resting length, whereas phasic EMG activity was still absent. During inspiratory-resisted breathing and airway occlusion, Genio showed phasic EMG activity but still lengthened. We conclude that the Genio in awake, nonanesthetized canines shows active contraction and EMG activity only during swallowing. During quiet or stimulated breathing, Genio is electrically inactive with passive lengthening. Even against resistance, Genio is electrically active but still lengthens during inspiration.


1989 ◽  
Vol 98 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Gayle E. Woodson

The cricothyroid muscle (CT) appears to be an accessory muscle of respiration. Phasic inspiratory contraction is stimulated by increasing respiratory demand. Reflex activation of the CT may be responsible for the paramedian position of the vocal folds, and hence airway obstruction, in patients with bilateral recurrent laryngeal nerve (RLN) paralysis. Previous research has demonstrated the influence of superior laryngeal nerve (SLN) afferents on CT activity. The present study addresses the effects of vagal and RLN afferents. Electromyographic activity of the CT and right posterior cricoarytenoid muscle was monitored in anesthetized cats during tracheotomy breathing and in response to tracheal or upper airway occlusion in the intact animal. This was repeated following left RLN transection, bilateral vagotomy, and bilateral SLN transection. Vagotomy abolished CT response to tracheal occlusion and markedly reduced the response to upper airway occlusion. Vocal fold position following RLN transection appeared to correlate with CT activity; however, observed changes were minor.


1986 ◽  
Vol 61 (4) ◽  
pp. 1523-1533 ◽  
Author(s):  
J. L. Roberts ◽  
W. R. Reed ◽  
O. P. Mathew ◽  
B. T. Thach

The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.


1989 ◽  
Vol 66 (3) ◽  
pp. 1501-1505 ◽  
Author(s):  
G. Insalaco ◽  
G. Sant'Ambrogio ◽  
F. B. Sant'Ambrogio ◽  
S. T. Kuna ◽  
O. P. Mathew

Esophageal electrodes have been used for recording the electromyographic (EMG) activity of the posterior cricoarytenoid muscle (PCA). To determine the specificity of this EMG technique, esophageal electrode recordings were compared with intramuscular recordings in eight anesthetized mongrel dogs. Intramuscular wire electrodes were placed in the right and left PCA, and the esophageal electrode was introduced through the nose or mouth and advanced into the upper esophagus. On direct visualization of the upper airway, the unshielded catheter electrode entered the esophagus on the right or left side. Cold block of the recurrent laryngeal nerve (RLN) ipsilateral to the esophageal electrode was associated with a marked decrease in recorded activity, whereas cold block of the contralateral RLN resulted only in a small reduction in activity. After supplemental doses of anesthesia were administered, bilateral RLN cold block essentially abolished the activity recorded with the intramuscular electrodes as well as that recorded with the esophageal electrode. Before supplemental doses of anesthesia were given, especially after vagotomy, the esophageal electrode, and in some cases the intramuscular electrodes, recorded phasic inspiratory activity not originating from the PCA. Therefore, one should be cautious in interpreting the activity recorded from esophageal electrodes as originating from the PCA, especially in conditions associated with increased respiratory efforts.


1988 ◽  
Vol 65 (5) ◽  
pp. 2124-2131 ◽  
Author(s):  
W. B. Van de Graaff

Patency of the upper airway (UA) is usually considered to be maintained by the activity of muscles in the head and neck. These include cervical muscles that provide caudal traction on the UA. The thorax also applies caudal traction to the UA. To observe whether this thoracic traction can also improve UA patency, we measured resistance of the UA (RUA) during breathing in the presence and absence of UA muscle activity. Fifteen anesthetized dogs breathed through tracheostomy tubes. RUA was calculated from the pressure drop of a constant flow through the isolated UA. RUA decreased 31 +/- 5% (SEM) during inspiration. After hyperventilating seven of these dogs to apnea, we maximally stimulated the phrenic nerves to produce paced diaphragmatic breathing. Despite absence of UA muscle activity, RUA fell 51 +/- 11% during inspiration. Graded changes were produced by reduced stimulation. In six other dogs we denervated all UA muscles. RUA still fell 25 +/- 7% with inspiration in these spontaneously breathing animals. When all caudal ventrolateral cervical structures mechanically linking the thorax to the UA were severed, RUA increased and respiratory fluctuations ceased. These findings indicate that tonic and phasic forces generated by the thorax can improve UA patency. Inspiratory increases in UA patency cannot be attributed solely to activity of UA muscles.


1996 ◽  
Vol 33 (6) ◽  
pp. 459-462 ◽  
Author(s):  
Hidehiko Koizumi ◽  
Mikihiko Kogo ◽  
Tokuzo Matsuya

The soft palate and larynx play an important role in respiration and phonation, regulating the airflow in the upper airway. The levator veli palatini muscle (LVP) is the principal muscle responsible for generating palatal movements. The lateral cricoarytenoid muscle (LCA) is a laryngeal adductor muscle, and the posterior cricoarytenoid muscle (PCA) is a laryngeal abductor muscle. This study was designed to define, by electromyographic techniques, the coordination between palatal and laryngeal muscle activities in response to rebreathing and lung inflation. We performed tracheotomies on 12 mongrel dogs anesthetized with sodium pentobarbital and compared the effects of rebreathing and lung inflation on LVP activities with those on LCA and PCA activities. During rebreathing, expiratory LVP and inspiratory PCA activities were progressively augmented, but expiratory LCA activity was inhibited. On the other hand, lung inflation caused augmentation of LVP and LCA activities. In contrast, lung inflation inhibited PCA activity. We thus concluded that LVP activity coordinates with PCA activity in response to alternation of Paco2 and Pao2 levels, while it coordinates with LCA activity in response to lung inflation.


1996 ◽  
Vol 80 (3) ◽  
pp. 924-930 ◽  
Author(s):  
T. E. Terndrup ◽  
S. L. Knuth ◽  
M. J. Gdovin ◽  
R. Darnall ◽  
D. Bartlett

We evaluated respiratory motor nerve activities during experimental seizures induced with subcortical penicillin. The activities of the phrenic (PH), nasolabial (NL), and hypoglossal (HG) nerves and the recurrent laryngeal motor branches to the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles were analyzed in 13 anesthetized, vagotomized, paralyzed, and ventilated cats. During ictal and interictal phases of seizures, nerve activities became irregular and peak integrated nerve activities increased, particularly in the case of the PH nerve. The ictal phase of seizures was associated with increased tonic activity and decreased phasic respiratory discharges, particularly in the cases of the HG, NL, and PCA nerves. During some prolonged ictal discharges, entrainment of nerve activities by cortical spiking was associated with irregular uncoordinated activation, particularly in the TA nerve. These studies help explain respiratory impairment during seizures by providing evidence of impaired coordination between activation of muscles that regulate upper airway patency and activation of the diaphragm.


1985 ◽  
Vol 58 (1) ◽  
pp. 258-264 ◽  
Author(s):  
J. T. Fisher ◽  
O. P. Mathew ◽  
F. B. Sant'Ambrogio ◽  
G. Sant'Ambrogio

We studied the changes in breathing pattern due to pressure and airflow stimuli applied to isolated upper airway in nine 1- to 14-day-old and six 29- to 35-day-old anesthetized puppies breathing through a tracheostomy. Negative-pressure and flow, both inspiratory and expiratory, altered the breathing pattern only in the 1- to 14-day-old puppies, whereas positive pressure was ineffective in both age groups. Negative pressure caused apnea in 12% of the trials, expiratory flow in 18%, and inspiratory flow in 21%. When apnea did not occur there was a significant prolongation of inspiratory and expiratory time and a decrease of tidal volume of the first breath following the application of negative pressures. Section of the superior laryngeal nerves abolished the responses to pressure and flow. In nine 1- to 14-day-old and four 29- to 35-day-old puppies we recorded the activity of single units of the superior laryngeal nerves. We identified specialized receptors responding to pressure (68.5%), flow (2.7%), and contraction of upper airway muscles (drive, 28.8%). All types of receptors had a prevalent inspiratory-related activity. In the younger age group the discharge rate of pressure receptors at comparable negative pressures was lower than in older puppies. The strong inhibitory influences originating from the upper airway in the early stages of development presumably reflect different integrative properties of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document