Control of larynx during loaded breathing in normal subjects

1986 ◽  
Vol 60 (6) ◽  
pp. 1887-1893 ◽  
Author(s):  
K. Sekizawa ◽  
M. Yanai ◽  
H. Sasaki ◽  
T. Takishima

We examined laryngeal resistance (Rla) in six normal subjects in control and four kinds of loaded breathing: hypercapnia, chest strapping, added external resistance, and inhaled methacholine. Rla was measured with a low-frequency sound methed (Sekizawa et al., J. Appl. Physiol. 55: 591–597, 1983). In control and the four kinds of loaded breathing, changes in Rla were tightly coupled with ventilation and Rla decreased during inspiration and increased during expiration. Hypercapnia and chest strapping significantly decreased Rla in both inspiration and expiration in all subjects. Added external resistance decreased inspiratory Rla in all subjects, but decreased expiratory Rla in three subjects, did not change it in two subjects, and increased it in one subject. Inhaled methacholine increased Rla in both inspiration and expiration in all subjects. The present study suggests that although laryngeal movement is tightly coupled with ventilation, laryngeal aperture may be determined by the complex competition of dilating and constricting mechanisms associated with the activity of the respiratory center and neural reflexes from the airway.

1985 ◽  
Vol 58 (4) ◽  
pp. 1164-1169 ◽  
Author(s):  
K. Sekizawa ◽  
H. Sasaki ◽  
T. Takishima

Laryngeal resistance (Rla) in the postpanting interval (PPRla) was examined in five normal subjects in the control state and with methacholine- and histamine-induced bronchoconstriction. Respiratory resistance (Rrs) was measured by the forced oscillation technique at 10 Hz, and Rla was measured by the low-frequency sound method (Sekizawa, K., C. Shindoh, W. Hida, S. Suzuki, et al. J. Appl. Physiol. 55:591–597, 1983). Inspiratory Rrs (IRrs) was lower than expiratory Rrs (ERrs), and Rrs immediately after panting (PPRrs) was not significantly different from IRrs in the three airway conditions. Rla increased with bronchoconstriction and inspiratory Rla (IRla) was lower than expiratory Rla (ERla). PPRla was lower than IRla (P less than 0.01) by an amount corresponding to the decrease in Rrs in the control airway. However, in constricted airways, PPRla was higher than IRla and about the same as ERla. We suggest that the panting maneuver is suitable for minimizing the effect of laryngeal artifact in the control airway, but in the constricted airway the panting maneuver may fail to cause widening of the laryngeal orifice.


1991 ◽  
Vol 70 (6) ◽  
pp. 2632-2639 ◽  
Author(s):  
S. Suzuki ◽  
J. Suzuki ◽  
T. Okubo

We examined expiratory muscle fatigue during expiratory resistive loading in 11 normal subjects. Subjects breathed against expiratory resistances at their own breathing frequency and tidal volume until exhaustion or for 60 min. Respiratory muscle strength was assessed from both the maximum static expiratory and inspiratory mouth pressures (PEmax and PImax). At the lowest resistance, PEmax and PImax measured after completion of the expiratory loaded breathing were not different from control values. With higher resistance, both PEmax and PImax were decreased (P less than 0.05), and the decrease lasted for greater than or equal to 60 min. The electromyogram high-to-low frequency power ratio for the rectus abdominis muscle decreased progressively during loading (P less than 0.01), but the integrated EMG activity did not change during recovery. Transdiaphragmatic pressure during loading was increased 3.6-fold compared with control (P less than 0.05). These findings suggest that expiratory resistive loaded breathing induces muscle fatigue in both expiratory and inspiratory muscles. Fatigue of the expiratory muscles can be attributed directly to the high work load and that of the inspiratory muscles may be related to increased work due to shortened inspiratory time.


1987 ◽  
Vol 63 (4) ◽  
pp. 1406-1412 ◽  
Author(s):  
K. Sekizawa ◽  
M. Yanai ◽  
H. Sasaki ◽  
T. Takishima

We studied changes in both laryngeal resistance (Rla) and respiratory resistance (Rrs) after a voluntary deep breath in 7 normal and 20 asthmatic subjects. Rla was measured using a low-frequency sound method (Sekizawa et al. J. Appl. Physiol. 55: 591–597, 1983) and Rrs by forced oscillation at 3 Hz. In normal subjects, both Rla and Rrs significantly decreased after a voluntary deep breath (0.05 less than P less than 0.01). During methacholine provocation in the normal subjects, a voluntary deep breath significantly decreased Rrs (0.05 less than P less than 0.01, but Rla was significantly increased (0.05 less than P less than 0.01). In 10 asthmatic subjects in remission, a voluntary deep breath significantly increased Rrs (0.05 less than P less than 0.01) but significantly decreased Rla (0.05 less than P less than 0.01). In another 10 asthmatic subjects during spontaneous mild attacks, a voluntary deep breath significantly increased both Rrs and Rla (0.05 less than P less than 0.01). The present study showed that without obvious bronchoconstriction, Rla decreased after a voluntary deep breath in both normal and asthmatic subjects but, with bronchoconstriction, Rla increased in both groups. Subtraction of the change in Rla from Rrs gives the change in Rrs below the larynx (Rlow). Rlow changed little or decreased in normal subjects and increased in asthmatic subjects, irrespective of base-line bronchomotor tone. These results suggest that airway response below the larynx after a voluntary deep breath differentiates patients with bronchial asthma from normal subjects.


1983 ◽  
Vol 55 (2) ◽  
pp. 591-597 ◽  
Author(s):  
K. Sekizawa ◽  
C. Shindoh ◽  
W. Hida ◽  
S. Suzuki ◽  
Y. Akaizawa ◽  
...  

We measured laryngeal narrowing with low-frequency sound in human subjects. A low-frequency sound of 800 Hz was forced into the mouth, and sound-pressure amplitude above (SPAa) and below the vocal cord (SPAb) was detected using two separate microphones at the anterior neck. If the subject voluntarily narrowed the larynx at functional residual capacity, the increased respiratory resistance (Rrs) was only caused by increased laryngeal resistance, and SPAa was increased and SPAb was decreased. The percent changes of SPAa (SPAa%) minus that SPAb (SPAb%) from the initial values (SPAa% - SPAb% = Y) was proportional to the increase of Rrs from the initial control state (X, cmH2O X 1-1 X s); Y = 22.4 X1.20 (coef of correlation, r = 0.96, P less than 0.01). We confirmed similar proportions in dogs by manually narrowing the vocal cord. When laryngeal resistance was directly measured by tracheal puncture with a needle, the proportions between Y and X were not significantly dependent on the increase of Rrs below the vocal cord induced by methacholine inhalation in human subjects and histamine injection in dogs. We concluded that the increase of laryngeal resistance from the initial state could be detected noninvasively by using low-frequency sound.


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045321
Author(s):  
Chi Xu ◽  
Hui Guo ◽  
Yinghang Chen ◽  
Xiaori Dong ◽  
Hongling Ye ◽  
...  

1994 ◽  
Vol 10 (4-5) ◽  
pp. 633-643
Author(s):  
Gary E. Schwartz ◽  
Iris R. Bell ◽  
Ziya V. Dikman ◽  
Mercedes Fernandez ◽  
John P. Kline ◽  
...  

Recent studies from the University of Arizona indicate that normal subjects, both college students and the elderly, can register the presence of low-intensity odors in the electroencephalogram (EEG) in the absence of conscious awareness of the odors. The experimental paradigm involves subjects sniffing pairs of bottles, one containing an odorant (e.g. isoamyl acetate) dissolved in an odorless solvent (water or liquid silicone), the other containing just the solvent, while 19 channels of EEG are continuously recorded. For the low-intensity odor conditions, concentrations are adjusted downward (decreased) until subjects correctly identify the odor bottle at chance (50). The order of odorants, concentrations, and hand holding the control bottle, are counterbalanced within and across subjects. Three previous experiments found that alpha activity (8-12 hz) decreased in midline and posterior regions when subjects sniffed the low-intensity odors. The most recent study suggests that decreased theta activity (4-8 hz) may reflect sensory registration and decreased alpha activity may reflect perceptual registration. In a just completed experiment involving college students who were selected based on combinations of high and low scores on a scale measuring cacosmia (chemical odor intolerance) and high and low scores on a scale measuring depression, cacosmic subjects (independent of depression) showed greater decreases in low-frequency alpha (8-10 hz) and greater increases in low-frequency beta (12-16 hz) to the solvent propylene glycol compared to an empty bottle. Topographic EEG mapping to low-intensity odorants may provide a useful tool for investigating possible increased sensitivity to specific chemicals in chemically sensitive individuals.


Sign in / Sign up

Export Citation Format

Share Document