Prophylactic effects of dexamethasone in lung injury caused by hyperoxia and hyperventilation

1992 ◽  
Vol 72 (4) ◽  
pp. 1320-1325 ◽  
Author(s):  
J. M. Davis ◽  
J. Whitin

To determine if prophylactic corticosteroids would prevent acute lung injury caused by hyperoxia and barotrauma, 29 piglets (1.2 +/- 0.3 kg, 1–2 days of age) were studied. Ten piglets were hyperventilated [arterial PCO2 (PaCO2) 15–20 Torr] with 100% O2 for 48 h and compared with 10 piglets treated with the identical management but given 0.7 mg/kg of dexamethasone at time 0 and every 12 h for the 48-h study. Six piglets were normally ventilated (PaCO2 40–45 Torr) for 48 h with 21% O2 as an additional control group. Pulmonary function and tracheal aspirates were examined at time 0 and every 24 h. Bronchoalveolar lavage was performed for surfactant analyses at the conclusion of the study. In animals treated with hyperoxia and hyperventilation, lung compliance decreased 32% and tracheal aspirate polymorphonuclear leukocyte (PMN) chemotactic activity increased by 51%, cell counts by 204%, number of PMNs by 277%, elastase activity by 111%, and albumin concentration by 328% over 48 h (P less than 0.05). In contrast, dexamethasone-treated piglets had increases in only tracheal aspirate albumin concentration (206%) over the 48-h study. All cellular and biochemical variables were lower in dexamethasone-treated compared with hyperoxic hyperventilated piglets. Room air normal ventilation controls had only a 108% increase in tracheal aspirate albumin concentration noted. Despite quantitative differences in surfactant among the three groups, activity was unaffected. Results indicate that hyperoxia and hyperventilation for 48 h causes significant inflammatory changes and acute lung injury and that prophylactic high-dose dexamethasone significantly ameliorates this lung damage.

1993 ◽  
Vol 74 (5) ◽  
pp. 2234-2241 ◽  
Author(s):  
J. M. Davis ◽  
W. N. Rosenfeld ◽  
R. J. Sanders ◽  
A. Gonenne

To determine if recombinant human Cu-Zn superoxide dismutase (rhSOD) would prevent acute lung injury caused by hyperoxia and barotrauma, 26 newborn piglets were studied. Ten piglets were hyperventilated (arterial PCO2 15–20 Torr) with 100% O2 for 48 h. A second group received identical treatment for 4 h (n = 2) or 48 h (n = 8) but was given 5 mg/kg of rhSOD intratracheally at time 0. Six piglets were normally ventilated (arterial PCO2 40–45 Torr) for 48 h with 21% O2. Pulmonary function and tracheal aspirates were examined at time 0 and at 24 and 48 h, and bronchoalveolar lavage was performed at 48 h. In piglets treated with hyperoxia and hyperventilation, lung compliance decreased 42%, and tracheal aspirates showed an increase in neutrophil chemotactic activity (32%), total cell counts (135%), elastase activity (93%), and albumin concentration (339%) over 48 h (P < 0.05). All variables were significantly lower in rhSOD-treated piglets and comparable to normoxic control values. Surfactant remained active in all groups. Immunohistochemistry demonstrated that at 48 h significant rhSOD was distributed homogeneously in terminal airways. Adding rhSOD to tracheal aspirates of hyperoxic hyperventilated piglets did not alter neutrophil chemotaxis, suggesting that rhSOD protected the lung by reducing the production of chemotactic mediators. Results indicate that acute lung injury caused by 48 h of hyperoxia and hyperventilation is significantly ameliorated by prophylactic intratracheal administration of rhSOD.


1994 ◽  
Vol 77 (3) ◽  
pp. 1281-1287 ◽  
Author(s):  
Y. Suzuki ◽  
T. Tanigaki ◽  
D. Heimer ◽  
W. Wang ◽  
W. G. Ross ◽  
...  

Neutrophil adherence to vascular endothelium is partially mediated by adhesion molecules, including intracellular adhesion molecule 1 (ICAM-1), on endothelial cells. We examined the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of ICAM-1 in human umbilical vein endothelial cells (HUVEC). TGF-beta 1 (1 ng/ml) increased ICAM-1 and ICAM-1 mRNA expression in HUVEC, as assessed by flow cytometry and Northern blot analysis, respectively. In addition, we investigated whether exogenous recombinant TGF-beta 1 can cause neutrophil-mediated lung injury in guinea pigs. The plasma half-life of 125I-labeled TGF-beta 1 in guinea pigs was 4.6 +/- 0.1 min, and the 125I activity was 2.8 +/- 0.2% 8 h after injection. The ratio of 125I-labeled albumin concentration in lung tissue and bronchoalveolar lavage (BAL) fluid to that in plasma, lung wet-to-dry weight ratio, numbers of neutrophils in BAL fluid, and numbers of neutrophils per alveolus in fixed lung sections increased in guinea pigs that received a high dose of TGF-beta 1 (25 micrograms i.v. followed by 2 micrograms/h for 8 h) compared with the control group. These results suggest that TGF-beta 1 causes neutrophil-mediated lung injury, possibly through upregulation of ICAM-1 on endothelial cells, and might be important in the pathogenesis of lung injury.


2021 ◽  
Author(s):  
Sang Hoon Lee ◽  
Mi Hwa Shin ◽  
Ah Young Leem ◽  
Su Hwan Lee ◽  
Kyung Soo Chung ◽  
...  

Abstract For patients with acute respiratory distress syndrome, a ventilator is essential to supply oxygen to tissues, but it may also cause lung damage. We investigated the role of NOX4 in a ventilator-induced lung injury (VILI) model.Wild-type (WT) male C57BL/6J mice and NOX4 knockout (KO) male mice were divided into five groups: (1) control group; (2) high tidal ventilation (HTV) group: WT mice + HTV; (3) NOX4 KO group; (4) NOX4 KO with HTV group; (5) NOX4 inhibitor group: WT mice + HTV + NOX4 inhibitor. In addition, the relationship between EphA2 (which is related to lung injury) and NOX4 was investigated using EphA2 KO mice, and NOX4 levels in the bronchoalveolar lavage fluid (BALF) of 38 patients with pneumonia were examined.In the NOX4 inhibitor group, cell counts and protein concentrations from BALF were significantly lower than those in the HTV group (both, p<0.001). In the NOX4 KO group and the NOX4 inhibitor group, EphA2 levels were significantly lower than those in the HTV group (p<0.001). NOX4 levels were significantly higher in patients with pneumonia and patients who received ventilator treatment in the ICU.In the VILI model, it may be possible to block VILI using NOX4 antibodies.


2020 ◽  
Author(s):  
Sang Hoon Lee ◽  
Mi Hwa Shin ◽  
Ah Young Leem ◽  
Su Hwan Lee ◽  
Kyung Soo Chung ◽  
...  

Abstract BackgroundFor patients with acute respiratory distress syndrome (ARDS), a ventilator is essential to supply oxygen to tissues, but it may also cause lung damage. In this study, we investigated the role of NOX4 in lung injury using NOX4 knockout (KO) mice and NOX4 inhibitors in a ventilator-induced lung injury (VILI) model.MethodsWild-type male C57BL/6J mice and NOX4 KO male mice were divided into five groups: (1) control group: wild-type (WT) mice + non-ventilator; (2) high tidal ventilation (HTV) group: WT mice + HTV; (3) NOX4 KO group: NOX4 KO + non-ventilator; (4) NOX4 KO with HTV group: NOX4 KO mice + HTV; (5) NOX4 inhibitor group: WT mice + HTV + post-treatment (anti-GKT 137831 inhibitor). In the VILI model, the supine position was maintained at 24 mL/kg volume, 0 cm H2O PEEP, 100/min respiratory rate, and 0.21 inspired oxygen fraction. In the NOX4 inhibitor group, 50 μL anti-GKT 137831 inhibitor was injected intraperitoneally, 2 h after ventilator use. After 5 h of HTV, mice in the ventilator group were euthanized, and their lung tissues were obtained for further analysis. In addition, the relationship between EphA2 (which is related to lung injury) and NOX4 was investigated using EphA2 KO mice, and NOX4 levels in the bronchoalveolar lavage fluid (BALF) of 38 patients with pneumonia were examined.ResultsCell counts from BALFs were significantly lower (p<0.01) in the NOX4 KO with HTV group compared to that in the HTV group. In the NOX4 inhibitor group, cell counts and protein concentrations were significantly lower than those in the HTV group (both, p<0.001). In the NOX4 KO mouse group and the NOX4 inhibitor group, EphA2 levels were significantly lower than those in the HTV group (both, p<0.001). In patients with respiratory disease, NOX4 levels were significantly higher in patients with pneumonia and patients who received ventilator treatment in the intensive care unit.ConclusionsIn the VILI model, NOX4 expression is significantly associated with Eph-ephrin signaling. It may be possible to block VILI using NOX4 antibodies.


1989 ◽  
Vol 67 (6) ◽  
pp. 2432-2437 ◽  
Author(s):  
A. Ishizaka ◽  
J. R. Hatherill ◽  
H. Harada ◽  
M. Yonemaru ◽  
H. Hoffmann ◽  
...  

We administered recombinant human interleukin 2 (IL-2) to guinea pigs to investigate whether IL-2 would cause acute lung injury. In addition, we examined the effects of pentoxifylline (PTXF) on IL-2-induced acute lung injury. Three groups of animals were studied over a period of 8 h. The saline control group was injected intravenously with 2 ml of pyrogen-free saline; the IL-2 group was injected intravenously with 4 X 10(6) U/kg recombinant IL-2; and the IL-2-PTXF group was injected with a 20-mg/kg bolus of PTXF followed by a continuous infusion (6 mg.kg-1.h-1) started 60 min before injection of 4 X 10(6) U/kg IL-2. Lung water (wet-to-dry lung weight ratio), the concentration ratios of 125I-albumin in bronchoalveolar lavage (BAL) fluid and lung tissue compared with plasma (125I-albumin BAL-to-plasma, 125I-albumin lung-to-plasma), and cell counts in BAL fluid were examined. An intravenous injection of IL-2 caused an increased lung water (P less than 0.01), an increased 125I-albumin lung-to-plasma ratio (P less than 0.05), and a significant increase in the absolute number of neutrophils, lymphocytes, and macrophages in BAL fluid compared with the saline control. In contrast, the PTXF-pretreated group did not demonstrate IL-2-induced acute lung injury (lung water, 125I-albumin lung-to-plasma) or increased accumulation of neutrophils, lymphocytes, and macrophages in the BAL. These data suggest a possible role for PTXF in attenuating the side effects of IL-2.


1995 ◽  
Vol 83 (1) ◽  
pp. 169-177. ◽  
Author(s):  
Kahoru Nishina ◽  
Katsuya Mikawa ◽  
Nobuhiro Maekawa ◽  
Yumiko Takao ◽  
Hidefumi Obara

Background It is well known that endotoxin causes acute lung injury, resulting in adult respiratory distress syndrome. Lidocaine pretreatment has recently been shown to attenuate endotoxin-induced lung injury in rabbits. The aim of the current study was to determine whether early postinjury treatment with intravenous lidocaine could attenuate acute lung injury induced by endotoxin in rabbits. Methods Thirty-two male anesthetized rabbits were randomly assigned to receive one of four treatments (n = 8 for each group): infusion of saline (group S-S), infusion of saline with lidocaine treatment (group S-L), infusion of Escherichia coli endotoxin (100 micrograms.kg-1 over a 60-min period) without lidocaine treatment (group E-S), or infusion of endotoxin with lidocaine treatment (group E-L). Ten minutes after the end of infusion of endotoxin (groups E-L and E-S) or saline (groups S-S and S-L), the animals received a bolus injection followed by continuous infusion of lidocaine (2 mg.kg-1 + 2 mg.kg-1.h-1 in groups S-L and E-L) or saline (groups S-S and E-S). The rabbits' lungs were ventilated with 40% O2. Hemodynamics, peripheral leukocyte and platelet counts, and arterial O2 tension (PaO2) were recorded during the ventilation period (6 h). After the observation, lung mechanics; the cell fraction of bronchoalveolar lavage fluid (BALF); and concentrations of activated complement components C3a and C5a, cytokines, and arachidonic acid metabolites in BALF were measured and analyzed. The ratio of lung wet weight to dry weight (W/D weight ratio) and albumin concentrations in BALF were analyzed as indexes of pulmonary edema. The Cypridina luciferin analogue-dependent chemiluminescence (representing O2 production) by neutrophils isolated from the pulmonary artery and light-microscopic findings of the lung were compared among the four groups. Results Endotoxin caused decreases in peripheral leukocyte and platelet counts, lung compliance, and PaO2. It caused increases in lung W/D weight ratio; polymorphonuclear cell counts in BALF; and albumin, C3a, C5a, tumor necrosis factor-alpha, interleukin (IL)-1 beta, IL-6, IL-8, and thromboxane B2 concentrations in BALF. Lidocaine attenuated the changes in W/D weight ratio and morphologic lung damage. The change in compliance, decrease in PaO2, and albumin concentrations in BALF were slightly but significantly less in rabbits receiving lidocaine after injury. The Cypridina luciferin analogue-dependent chemiluminescence by neutrophils was greater in rabbits receiving endotoxin without lidocaine than in those receiving endotoxin with lidocaine. Conclusions These results indicate that early treatment with lidocaine attenuates endotoxin-induced lung edema in rabbits without affecting chemical mediators in BALF. However, the improvement is slight and likely to be of little clinical significance.


2021 ◽  
Author(s):  
Sang Hoon Lee ◽  
Mi Hwa Shin ◽  
Ah Young Leem ◽  
Su Hwan Lee ◽  
Kyung Soo Chung ◽  
...  

Abstract Background: For patients with acute respiratory distress syndrome, a ventilator is essential to supply oxygen to tissues, but it may also cause lung damage. In this study, we investigated the role of NOX4 using NOX4 knockout (KO) mice and NOX4 inhibitors in a ventilator-induced lung injury (VILI) model.Methods: Wild-type (WT) male C57BL/6J mice and NOX4 knockout (KO) male mice were divided into five groups: (1) control group; (2) high tidal ventilation (HTV) group: WT mice + HTV; (3) NOX4 KO group; (4) NOX4 KO with HTV group; (5) NOX4 inhibitor group: WT mice + HTV + NOX4 inhibitor. In the VILI model, the supine position was maintained at 24 mL/kg volume, 0 cm H2O PEEP, 100/min respiratory rate, and 0.21 inspired oxygen fraction. In the NOX4 inhibitor group, 50 μL anti-GKT 137831 inhibitor was injected intraperitoneally, 2 h after ventilator use. After 5 h of HTV, mice in the ventilator group were euthanized, and their lung tissues were obtained for further analysis. In addition, the relationship between EphA2 (which is related to lung injury) and NOX4 was investigated using EphA2 KO mice, and NOX4 levels in the bronchoalveolar lavage fluid (BALF) of 38 patients with pneumonia were examined.Results: Cell counts from BALFs were significantly lower (p<0.01) in the NOX4 KO with HTV group compared to that in the HTV group. In the NOX4 inhibitor group, cell counts and protein concentrations from BALF were significantly lower than those in the HTV group (both, p<0.001). In the NOX4 KO group and the NOX4 inhibitor group, EphA2 levels were significantly lower than those in the HTV group (p<0.001). In patients with respiratory disease, NOX4 levels were significantly higher in patients with pneumonia and patients who received ventilator treatment in the intensive care unit.Conclusion: NOX4 levels were significantly higher in patients with pneumonia and patients who received ventilator treatment in the ICU. In the VILI model, it may be possible to block VILI using NOX4 antibodies.


2021 ◽  

Purpose: The aim of this study was to assess the effect of phillygenin (PHI) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and understand its underlying mechanisms. Methods: Mice were separated into four different groups at random, including LPS, LPS+ PHI (5 mg/kg), LPS + PHI (50 mg/kg) and control group. The two LPS + PHI groups were intraperitoneally administered with PHI after LPS intratracheal administered for 1 h. Subsequently, the lung tissues of different groups were collected and evaluated by H&E staining and W/D (W/D) ratio. The inflammatory cytokines in BALF or lung tissue were also assessed. Western blot assay was applied to examine the expressions of TLR4, MyD88, and NF-κB. Results: The ameliorated pathological changes and lung W/D ratio demonstrated that PHI dramatically suppressed the lung injury levels. PHI strikingly reduced the number of inflammatory cell counts and total protein concentration in BALF. In addition, PHI attenuated expression of IL-1β and TNF-α in BALF and lung tissue. Furthermore, it was confirmed that PHI alleviated LPS-induced ALI via TLR4/MyD88/NF-κB pathway. Conclusions: Together the above results show that PHI attenuates LPS-induced ALI via inactivation of TLR4/MyD88/NF-κB pathway in newborn mice.


Sign in / Sign up

Export Citation Format

Share Document