Cigarette smoke extract potentiates bradykinin-induced increases in microvascular permeability

1993 ◽  
Vol 75 (1) ◽  
pp. 27-32 ◽  
Author(s):  
W. G. Mayhan ◽  
I. Rubinstein

The first goal of this study was to determine whether cigarette smoke extract (CSE) increases microvascular permeability of the hamster cheek pouch in vivo. The second goal was to determine whether CSE potentiates bradykinin-induced increases in vascular permeability in the hamster cheek pouch. Using intravital microscopy, we examined the permeability of the hamster cheek pouch to fluorescein isothiocyanate-dextran (mol wt 70,000). Increases in permeability were quantitated by counting the number of postcapillary venular leaky sites per 0.11 cm2. Superfusion of CSE (1, 5, and 10%) did not produce venular leaky sites and, thus, did not alter macromolecular permeability. Superfusion of bradykinin (0.1, 0.5, and 1.0 microM) produced a dose-related increase in the number of venular leaky sites. Formation of leaky sites in response to bradykinin was potentiated by CSE. To determine whether potentiation of bradykinin-induced leaky site formation by CSE was related to products released via the cyclooxygenase pathway, we examined the effects of pretreatment with indomethacin (10 mg/kg i.v.). Indomethacin did not alter the potentiating effect of CSE on bradykinin-induced leaky site formation. These findings suggest that CSE does not alter basal permeability of the hamster cheek pouch microcirculation in vivo. However, CSE potentiates bradykinin-induced increases in microvascular permeability. The mechanism of CSE-induced potentiation of microvascular permeability does not appear to be related to substances produced via the cyclooxygenase pathway.

1998 ◽  
Vol 274 (1) ◽  
pp. R237-R242
Author(s):  
Xiao-Pei Gao

The purpose of this study was to determine whether tannic acid elicits neurogenic plasma exudation from the oral mucosa in vivo and, if so, whether this response is transduced in part by thel-arginine-nitric oxide (NO) biosynthetic pathway. Using intravital microscopy, we found that suffusion of tannic acid elicits significant concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-dextran (molecular mass 70 kDa) from the in situ hamster cheek pouch ( P < 0.05). These effects are significantly attenuated by two selective, but structurally distinct, nonpeptide neurokinin-1 (NK1) receptor antagonists, CP-96,345 and RP-67580, but not by CP-96,344, the 2R,3R enantiomer of CP-96,345. N G-nitrol-arginine methyl ester (l-NAME), an NO synthase inhibitor, but notd-NAME, significantly attenuates tannic acid-induced responses.l-Arginine, but notd-arginine, reverses the attenuating effects of l-NAME. We conclude that tannic acid elicitsl-arginine-NO biosynthetic pathway-dependent neurogenic plasma exudation from the in situ hamster cheek pouch.


1999 ◽  
Vol 87 (2) ◽  
pp. 619-625 ◽  
Author(s):  
Xiao-Pei Gao ◽  
Syed R. Akhter ◽  
Hiroyuki Ikezaki ◽  
Dennis Hong ◽  
Israel Rubinstein

The purpose of this study was to determine whether dexamethasone attenuates the acute increase in macromolecular efflux from the oral mucosa elicited by an aqueous extract of smokeless tobacco (STE) in vivo, and, if so, whether this response is specific. Using intravital microscopy, we found that 20-min suffusion of STE elicited significant, concentration-related leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the in situ hamster cheek pouch ( P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated the bradykinin-induced leaky site formation and the increase in clearance of FITC-dextran from the cheek pouch. However, it had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on baseline arteriolar diameter and on bradykinin-induced vasodilation in the cheek pouch. Collectively, these data indicate that dexamethasone attenuates, in a specific fashion, the acute increase in macromolecular efflux from the in situ oral mucosa evoked by short-term suffusion of STE. We suggest that corticosteroids mitigate acute oral mucosa inflammation elicited by smokeless tobacco.


1991 ◽  
Vol 261 (6) ◽  
pp. H1913-H1918 ◽  
Author(s):  
I. Rubenstein ◽  
T. Yong ◽  
S. I. Rennard ◽  
W. G. Mayhan

The purpose of this study was to examine the effects of cigarette smoke extract on endothelium-dependent and endothelium-independent dilatation of arterioles in vivo. Using intravital microscopy, we measured diameter of arterioles contained within the microcirculation of the hamster cheek pouch during suffusion with acetylcholine and nitroglycerin, before and after treatment with cigarette smoke extract. Under control conditions, acetylcholine and nitroglycerin produced dose-related dilatation of cheek pouch arterioles. Superfusion of cigarette smoke extract (1.0%) did not alter baseline diameter of arterioles or vasodilatation in response to nitroglycerin but impaired dilatation of arterioles in response to acetylcholine. Next, we examined the possibility that impaired dilatation of cheek pouch arterioles in response to acetylcholine after exposure to cigarette smoke extract may be related to the release of substances produced via the cyclooxygenase pathway. In indomethacin-pretreated hamsters, acetylcholine produced similar vasodilatation before and after exposure to cigarette smoke extract. Thus these findings suggest that cigarette smoke extract impairs endothelium-dependent responses of cheek pouch arterioles. The mechanism of impaired responses of cheek pouch arterioles after exposure to cigarette smoke extract appears to be related to the release of substances produced via the cyclooxygenase pathway.


1996 ◽  
Vol 81 (5) ◽  
pp. 1996-2003 ◽  
Author(s):  
William G. Mayhan ◽  
Glenda M. Sharpe

Mayhan, William G., and Glenda M. Sharpe. Effect of cigarette smoke extract on arteriolar dilatation in vivo. J. Appl. Physiol. 81(5): 1996–2003, 1996.—The goal of this study was to determine whether cigarette smoke extract alters dilatation of arterioles in vivo in response to agonists that produce activation of ATP-sensitive potassium channels and activation of adenylate cyclase. By using intravital microscopy, we measured diameter of arterioles contained within the microcirculation of the hamster cheek pouch during suffusion with agonists in the absence and presence of cigarette smoke extract (0.1, 0.5, and 1.0%). Before treatment with cigarette smoke extract, activation of ATP-sensitive potassium channels with aprikalim and cromakalim produced dose-related dilatation of cheek pouch arterioles. Similarly, activation of adenylate cyclase with isoproterenol and forskolin produced dose-related dilatation of cheek pouch arterioles before treatment with cigarette smoke extract. Superfusion of 0.1% cigarette smoke extract did not change baseline diameter of arterioles and did not alter responses of cheek pouch arterioles to activation of ATP-sensitive potassium channels and adenylate cyclase. Superfusion of 0.5 and 1.0% cigarette smoke extract also did not alter baseline diameter of arterioles but did impair dilatation of arterioles in response to activation of ATP-sensitive potassium channels and adenylate cyclase. These findings suggest that cigarette smoke extract impairs dilatation of resistance arterioles in response to activation of important cellular dilator pathways.


1997 ◽  
Vol 272 (2) ◽  
pp. R475-R481 ◽  
Author(s):  
X. P. Gao ◽  
S. Von Essen ◽  
I. Rubinstein

The purpose of this study was to determine whether an aqueous extract of grain sorghum dust (GDE) elicits neurogenic plasma exudation in the oral mucosa in vivo. Using intravital microscopy, we found that GDE elicited significant, concentration-dependent leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the hamster cheek pouch (P < 0.05). The selective, nonpeptide neurokinin(1) (substance P) receptor antagonists, CP-96,345 and RP-67580, but not the 2R,3R enantiomer CP-96,344, significantly attenuated GDE-induced leaky site formation and increase in clearance of FITC-dextran (P < 0.05). Indomethacin had no significant effects on GDE-induced responses. CP-96,345 had no significant effects of adenosine-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch. We conclude that GDE elicits neurogenic plasma exudation from the oral mucosa in vivo. We suggest that this process is one mechanism whereby grain sorghum dust elicits immediate oral mucosa inflammation in vivo.


1993 ◽  
Vol 74 (6) ◽  
pp. 2896-2903 ◽  
Author(s):  
X. P. Gao ◽  
W. G. Mayhan ◽  
J. M. Conlon ◽  
S. I. Rennard ◽  
I. Rubinstein

The purpose of this study was to investigate the mechanisms that mediate T-kinin- (Ile-Ser-bradykinin) induced increases in macromolecule extravasation in the hamster cheek pouch. Changes in plasma extravasation were quantified by counting the number of leaky sites and calculating the clearance of fluorescein isothiocyanate- (FITC) dextran (mol mass = 70 kDa) during suffusion of the cheek pouch with T-kinin (0.1–1.0 microM) by using intravital microscopy. T-kinin induced a significant time- and concentration-dependent increase in leaky site formation and clearance of FITC-dextran (P < 0.05). The increase in plasma extravasation in response to T-kinin was mediated by two mechanisms: a COOH-terminal-mediated stimulation of B2 bradykinin receptors in postcapillary venules and an NH2-terminal-mediated degranulation of mast cells leading to histamine release. Indomethacin and CP 96345, a selective nonpeptide neurokinin-1 receptor antagonist, had no significant effects on T-kinin-induced responses. We conclude that T-kinin increases macromolecule extravasation in the peripheral microcirculation by stimulating B2 bradykinin receptors in post-capillary venules and by degranulating mast cells.


1993 ◽  
Vol 265 (2) ◽  
pp. H593-H598
Author(s):  
X. P. Gao ◽  
R. A. Robbins ◽  
R. M. Snider ◽  
J. Lowe ◽  
S. I. Rennard ◽  
...  

The purpose of this study was to determine the receptor subtype(s) that mediates tachykinin-induced neurogenic plasma extravasation in the hamster cheek pouch. Changes in microvascular clearance were quantified by counting the number of leaky sites and calculating the clearance of fluorescein isothiocyanate-dextran [mol wt 70,000 (Dextran 70)] during suffusion of the cheek pouch with substance P, neurokinin A, neurokinin B, and capsaicin. Suffusion of substance P, capsaicin, and neurokinin A, but not neurokinin B, was associated with a significant concentration-dependent increase in leaky site formation and clearance of fluorescein isothiocyanate-Dextran 70 (P < 0.05). However, the responses to substance P and capsaicin were significantly greater than those to neurokinin A. Pretreatment with the selective, nonpeptide NK1 receptor antagonist, CP-96,345, significantly attenuated substance P- and capsaicin-induced but not neurokinin A-induced responses (P < 0.05). These effects were specific, since the 2R,3R enantiomer, CP-96,344, was inactive, and CP-96,345 had no significant effect on adenosine-induced responses. We conclude that, in the hamster cheek pouch, NK1 receptors are the predominant receptors that mediate neurogenic plasma extravasation.


1994 ◽  
Vol 266 (6) ◽  
pp. H2369-H2373 ◽  
Author(s):  
W. G. Mayhan

The goal of this study was to determine the role of nitric oxide in histamine-induced increases in macromolecular extravasation in the hamster cheek pouch in vivo. We used intravital fluorescent microscopy and fluorescein isothiocyanate dextran (FITC-dextran; mol wt = 70,000 K) to examine extravasation from postcapillary venules in response to histamine before and after application of an enzymatic inhibitor of nitric oxide, NG-monomethyl-L-arginine (L-NMMA; 1.0 microM). Increases in extravasation of macromolecules were quantitated counting the number of venular leaky sites. Histamine (1.0 and 5.0 microM) increased the number of venular leaky sites from zero (basal conditions) to 11 +/- 1 and 21 +/- 2/0.11 cm2, respectively. Superfusion of L-NMMA (1.0 microM) and LY-83583 (1.0 microM) significantly decreased histamine-induced formation of venular leaky sites, whereas L-arginine (100 microM) potentiated histamine-induced formation of venular leaky sites. In contrast, superfusion of NG-monomethyl-D-arginine (1.0 microM) did not inhibit the formation of venular leaky sites in response to histamine. Thus the findings of the present study suggest that production of nitric oxide, and subsequent activation of guanylate cyclase, plays an important role in macromolecular efflux in vivo in response to histamine.


1996 ◽  
Vol 80 (3) ◽  
pp. 818-823 ◽  
Author(s):  
X. P. Gao ◽  
J. M. Conlon ◽  
J. K. Vishwanatha ◽  
R. A. Robbins ◽  
I. Rubinstein

The purpose of this study was to determine whether loop diuretics attenuate bradykinin-induced increase in clearance of macromolecules in the oral mucosa in situ and, if so, to start to determine the mechanisms that mediated these responses. By using intravital microscopy, we found that bradykinin induced a significant concentration-dependent increase in fluorescein isothiocyanate-labeled dextran (mol mass 70 kDa) leaky site formation in the hamster cheek pouch. These responses were significantly attenuated by topical application of two structurally distinct loop diuretics, furosemide and ethacrynic acid, onto the cheek pouch (P < 0.05). Hydrochlorothiazide, a nonloop diuretic, had no significant effects on bradykinin-induced responses. Furosemide had no significant effects on adenosine-induced leaky site formation. Application of bradykinin after furosemide, but not after hydrochlorothiazide, was associated with a significant concentration-dependent decrease in bradykinin-like immunoreactivity in the cheek pouch suffusate (P < 0.05). Prostaglandins and changes in vasomotor tone did not modulate the effects of furosemide on bradykinin-induced responses. These data indicate that loop diuretics attenuate bradykinin-induced increase in clearance of macromolecules in the oral mucosa in a specific fashion, probably by amplifying local bradykinin catabolism. We suggest that topical loop diuretics could be useful in the treatment of oral mucosa inflammation elicited by bradykinin.


1991 ◽  
Vol 261 (5) ◽  
pp. H1648-H1652 ◽  
Author(s):  
A. C. Tomeo ◽  
W. N. Duran

Using several platelet activating factor (PAF) receptor antagonists, we investigated whether a differential receptor sensitivity to PAF exists between the arteriolar and venular segments of the microcirculation. The microvascular bed of the hamster cheek pouch was observed with intravital fluorescent television microscopy. Alterations in arteriolar diameter and in the clearance of fluorescein isothiocyanate-dextran (FITC-Dx 150; mol wt 150,000) were measured in response to PAF. Topical application of 10(-7) M PAF elicits a 10-fold increase in FITC-Dx 150 clearance (mean +/- SE = 9,172 +/- 1,289 nl.2 h-1.g-1) compared with control and vasoconstricts arterioles (20-40 microns) to approximately 50% their control diameters. Pretreatment with WEB 2086 (2 mg/kg iv) or SDZ 63-675 (10 mg/kg iv) blocks PAF-induced vasoconstriction and significantly attenuates the clearance of FITC-Dx 150 evoked by PAF, producing mean clearance values of 2,164 +/- 604 and 3,648 +/- 262 nl.2 h-1.g-1 respectively. L-659,989 (2 or 10 mg/kg iv) and SDZ 63-675 (5 mg/kg iv) abolished the vasoconstrictor response but not the postcapillary venular permeability response to PAF. These data suggests the presence of heterogeneous PAF receptors between the pre- and postcapillary segments of the microcirculation.


Sign in / Sign up

Export Citation Format

Share Document