Endurance exercise training is associated with elevated basal sympathetic nerve activity in healthy older humans

1994 ◽  
Vol 77 (3) ◽  
pp. 1366-1374 ◽  
Author(s):  
A. V. Ng ◽  
R. Callister ◽  
D. G. Johnson ◽  
D. R. Seals

We tested the hypothesis that endurance training is associated with altered basal levels of muscle sympathetic nerve activity (MSNA) and responses to acute stress in healthy older adults. MSNA (peroneal microneurography) and plasma norepinephrine (NE) concentrations were measured during supine rest, a cold pressor test, and isometric handgrip (40% maximal voluntary force to exhaustion) in 16 older masters endurance athletes [10 men, 6 women; 66 +/- 1 (SE) yr] and 15 healthy normotensive untrained control subjects (9 men, 6 women; 65 +/- 1 yr). The athletes had higher levels of estimated daily energy expenditure and maximal oxygen uptake and lower levels of resting heart rate and body fat than the control subjects (all P < 0.05). MSNA during supine rest was elevated in the athletes whether expressed as burst frequency (43 +/- 2 vs. 32 +/- 3 bursts/min, respectively; P < 0.05) or burst incidence (75 +/- 4 vs. 52 +/- 5 bursts/100 heartbeats, respectively; P < 0.01). These whole group differences were due primarily to markedly higher levels of MSNA in the athletic vs. untrained women (48 +/- 4 vs. 25 +/- 3 bursts/min, 82 +/- 3 vs. 38 +/- 3 bursts/100 heartbeats, respectively, P < 0.001). In contrast, basal plasma NE concentrations were not significantly different in the athletes vs. control subjects. The MSNA and plasma NE responses to acute stress tended to be greater in the athletes. These findings indicate that vigorous regular aerobic exercise is associated with an elevated level of MSNA at rest and a tendency for an enhanced response to acute stress in healthy normotensive older humans.

1991 ◽  
Vol 260 (3) ◽  
pp. E379-E388 ◽  
Author(s):  
P. A. Farrell ◽  
T. J. Ebert ◽  
J. P. Kampine

The influence of an endogenous opioid peptide (EOP) antagonist (naloxone, 1.2 mg iv bolus) on muscle sympathetic nerve activity (MSNA, microneurography) was studied on 19 young male and female volunteers. Isometric handgrip, cold pressor test, and acute baroreceptor unloading with sodium nitroprusside (autonomic stresses) were carried out under two conditions, one group (n = 11) before (control responses) and after naloxone and another group (n = 8) before and after placebo saline. Monitored cardiovascular variables included heart rate, central venous pressure (jugular vein catheter), arterial blood pressure (radial artery catheter), circulating catecholamines, and forearm blood flow. At rest, cardiovascular variables and MSNA were not affected by either naloxone or saline. MSNA (total activity = burst frequency x burst amplitude/100 cardiac cycles) increased during isometric handgrip to a greater extent (30 +/- 6 vs. 16 +/- 5 arbitrary units) after naloxone compared with control trials (P less than 0.05). After naloxone, arterial systolic and diastolic blood pressures were higher during handgrip exercise. These augmented arterial pressures and MSNA responses were not evident during either the cold pressor test or the sodium nitroprusside stress. These data suggest that isometric muscle contraction elicits a sympathetic neural response that may be modified by EOP. This interaction is not evident during two other stresses, when sympathetic responses are equal to or greater than those provoked by isometric handgrip exercise.


2009 ◽  
Vol 296 (5) ◽  
pp. R1439-R1444 ◽  
Author(s):  
Jonathan S. Cook ◽  
Chester A. Ray

Previous studies from our laboratory have demonstrated that altering muscle temperature of the exercising forearm can elicit changes in muscle sympathetic nerve activity (MSNA) during ischemic isometric handgrip. The purpose of the current study was to determine the interactive effect of muscle temperature and blood flow on MSNA responses during dynamic handgrip (DHG). Eight subjects performed two bouts of graded DHG to fatigue followed by 2 min of postexercise muscle ischemia (PEMI). Local heating of the forearm increased muscle temperature from 33.6 ± 0.3 to 38.3 ± 0.5°C ( P < 0.05). Mean arterial pressure and heart rate increased in a linear fashion during graded DHG ( P < 0.05) but were not affected by muscle temperature. MSNA (burst frequency and total activity) at fatigue and PEMI were elevated in all conditions ( P < 0.05). However, MSNA responses were not different between temperature conditions. To ascertain the effect of blood flow, eight additional subjects completed two trials of ischemic DHG under control or warm conditions followed by 2 min of PEMI. MSNA, expressed as burst frequency and total activity, was significantly greater in warm compared with the control trial (Δ14 ± 3 and Δ9 ± 2 bursts/30 s, and Δ1,234 ± 260 and Δ751 ± 199 units/30 s, respectively). This finding supports the concept that muscle heating sensitizes skeletal muscle afferents during muscle contractions and augments MSNA in humans. However, on the basis of these findings, we conclude that muscle blood flow modulates the effect of muscle temperature on MSNA during exercise.


1994 ◽  
Vol 266 (1) ◽  
pp. H79-H83 ◽  
Author(s):  
C. A. Ray ◽  
N. H. Secher ◽  
A. L. Mark

To evaluate modulation of muscle sympathetic nerve activity (MSNA) during posthandgrip muscle ischemia (PHGMI), subjects performed 2 min of isometric handgrip at 33% of maximal voluntary contraction (MVC) followed by 2 min of PHGMI produced by forearm vascular occlusion. The response to PHGMI was studied in the absence and again during the addition of contralateral rhythmic handgrip (RHG; 40 times/min) at 15% (n = 6) and 30% (n = 10) MVC during the second minute of the PHGMI. Additionally, to isolate the effect of central command, response to PHGMI was studied during attempted RHG after sensory nerve blockade (n = 5). RHG for 2 min at 15 and 30% MVC and attempted RHG for 2 min did not increase MSNA. Isometric handgrip elicited an 130 +/- 48% increase in MSNA (P < 0.05), which was maintained during PHGMI. RHG at 15 and 30% MVC elicited an attenuation of MSNA (-10 +/- 7% and -14 +/- 6%, respectively) when performed during the second minute of PHGMI (P < 0.05). In contrast, attempted RHG did not significantly affect MSNA during PHGMI. The findings demonstrate modulation of MSNA during activation of the muscle metaboreflex. The attenuation of metaboreceptor-mediated increases in MSNA appear to be the result of mechanosensitive muscle afferents and not central command.


2013 ◽  
Vol 305 (8) ◽  
pp. H1238-H1245 ◽  
Author(s):  
Christopher E. Schwartz ◽  
Elisabeth Lambert ◽  
Marvin S. Medow ◽  
Julian M. Stewart

Withdrawal of muscle sympathetic nerve activity (MSNA) may not be necessary for the precipitous fall of peripheral arterial resistance and arterial pressure (AP) during vasovagal syncope (VVS). We tested the hypothesis that the MSNA-AP baroreflex entrainment is disrupted before VVS regardless of MSNA withdrawal using the phase synchronization between blood pressure and MSNA during head-up tilt (HUT) to measure reflex coupling. We studied eight VVS subjects and eight healthy control subjects. Heart rate, AP, and MSNA were measured during supine baseline and at early, mid, late, and syncope stages of HUT. Phase synchronization indexes, measuring time-dependent differences between MSNA and AP phases, were computed. Directionality indexes, indicating the influence of AP on MSNA (neural arc) and MSNA on AP (peripheral arc), were computed. Heart rate was greater in VVS compared with control subjects during early, mid, and late stages of HUT and significantly declined at syncope ( P = 0.04). AP significantly decreased during mid, late, and syncope stages of tilt in VVS subjects only ( P = 0.001). MSNA was not significantly different between groups during HUT ( P = 0.700). However, the phase synchronization index significantly decreased during mid and late stages in VVS subjects but not in control subjects ( P < .001). In addition, the neural arc was significantly affected more than the peripheral arc before syncope. In conclusion, VVS is accompanied by a loss of the synchronous AP-MSNA relationship with or without a loss in MSNA at faint. This provides insight into the mechanisms behind the loss of vasoconstriction and drop in AP independent of MSNA at the time of vasovagal faint.


2010 ◽  
Vol 299 (1) ◽  
pp. R80-R91 ◽  
Author(s):  
Lindsay D. DeBeck ◽  
Stewart R. Petersen ◽  
Kelvin E. Jones ◽  
Michael K. Stickland

Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data were obtained at rest, 12 healthy males (28 ± 5 yr) performed isometric handgrip exercise (30% maximal voluntary contraction) and the cold pressor test in random order, and were then exposed to hypoxia (inspired fraction of O2 = 0.105) for 7 min, during randomly assigned spontaneous and controlled breathing conditions (20 breaths/min, constant tidal volume, isocapnic). MSNA was recorded from the peroneal nerve, whereas HRV was calculated from ECG. At rest, controlled breathing did not alter MSNA but decreased LFnu ( P < 0.05 for all) relative to spontaneous breathing. MSNA increased in response to all stressors regardless of breathing. LFnu increased with exercise during both breathing conditions. During cold pressor, LFnu decreased when breathing was spontaneous, whereas in the controlled breathing condition, LFnu was unchanged from baseline. Hypoxia elicited increases in LFnu when breathing was controlled, but not during spontaneous breathing. The parallel changes observed during exercise and controlled breathing during hypoxia suggest that LFnu may be an indication of sympathetic outflow in select conditions. However, since MSNA and LFnu did not change in parallel with all stressors, a cautious approach to the use of LFnu as a marker of sympathetic activity is warranted.


Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 997-1005 ◽  
Author(s):  
Daniel A. Keir ◽  
Mark B. Badrov ◽  
George Tomlinson ◽  
Catherine F. Notarius ◽  
Derek S. Kimmerly ◽  
...  

As with blood pressure, age-related changes in muscle sympathetic nerve activity (MSNA) may differ nonlinearly between sexes. Data acquired from 398 male (age: 39±17; range: 18–78 years [mean±SD]) and 260 female (age: 37±18; range: 18–81 years) normotensive healthy nonmedicated volunteers were analyzed using linear regression models with resting MSNA burst frequency as the outcome and the predictors sex, age, MSNA, blood pressure, and body mass index modelled with natural cubic splines. Age and body mass index contributed 41% and 11%, respectively, of MSNA variance in females and 23% and 1% in males. Overall, changes in MSNA with age were sigmoidal. At age 20, mean MSNA of males and females were similar, then diverged significantly, reaching in women a nadir at age 30. After 30, MSNA increased nonlinearly in both sexes. Both MSNA discharge and blood pressure were lower in females until age 50 (17±9 versus 25±10 bursts·min −1 ; P <1×10 −19 ; 106±11/66±8 versus 116±7/68±9 mm Hg; P <0.01) but converged thereafter (38±11 versus 35±12 bursts·min −1 ; P =0.17; 119±15/71±13 versus 120±13/72±9 mm Hg; P >0.56). Compared with age 30, MSNA burst frequency at age 70 was 57% higher in males but 3-fold greater in females; corresponding increases in systolic blood pressure were 1 (95% CI, −4 to 5) and 12 (95% CI, 6–16) mm Hg. Except for concordance in females beyond age 40, there was no systematic change with age in any resting MSNA-blood pressure relationship. In normotensive adults, MSNA increases after age 30, with ascendance steeper in women.


2006 ◽  
Vol 290 (4) ◽  
pp. H1419-H1426 ◽  
Author(s):  
Masashi Ichinose ◽  
Mitsuru Saito ◽  
Narihiko Kondo ◽  
Takeshi Nishiyasu

We investigated the time-dependent modulation of arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) that occurs during isometric handgrip exercise (IHG). Thirteen healthy subjects performed a 3-min IHG at 30% maximal voluntary contraction, which was followed by a period of imposed postexercise muscle ischemia (PEMI). The ABR control of MSNA (burst incidence and strength and total activity) was evaluated by analyzing the relationship between spontaneous variations in diastolic arterial pressure (DAP) and MSNA during supine rest, at each minute of IHG, and during PEMI. We found that 1) the linear relations between DAP and MSNA variables were shifted progressively rightward until the third minute of IHG (IHG3); 2) 2 min into IHG (IHG2), the DAP-MSNA relations were shifted upward and were shifted further upward at IHG3; 3) the sensitivity of the ABR control of total MSNA was increased at IHG2 and increased further at IHG3; and 4) during PEMI, the ABR operating pressure was slightly higher than at IHG2, and the sensitivity of the control of total MSNA was the same as at IHG2. During PEMI, the DAP-burst strength and DAP-total MSNA relations were shifted downward from the IHG3 level to the IHG2 level, whereas the DAP-burst incidence relation remained at the IHG3 level. These results indicate that during IHG, ABR control of MSNA is modulated in a time-dependent manner. We suggest that this modulation of ABR function is one of the mechanisms underlying the progressive increase in blood pressure and MSNA during the course of isometric exercise.


Hypertension ◽  
1987 ◽  
Vol 9 (5) ◽  
pp. 429-436 ◽  
Author(s):  
R G Victor ◽  
W N Leimbach ◽  
D R Seals ◽  
B G Wallin ◽  
A L Mark

2001 ◽  
Vol 280 (3) ◽  
pp. H1383-H1390 ◽  
Author(s):  
P. J. Fadel ◽  
S. Ogoh ◽  
D. E. Watenpaugh ◽  
W. Wasmund ◽  
A. Olivencia-Yurvati ◽  
...  

We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 ± 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O2uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 ± 2.7 to 118.7 ± 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 ± 14% ( P < 0.01). However, despite the marked increases in MAP and MSNA during exercise, CBR-Δ%MSNA responses elicited by the application of various levels of neck pressure and neck suction ranging from +45 to −80 Torr were not significantly different from those at rest. Furthermore, estimated baroreflex sensitivity for the control of MSNA at rest was the same as during exercise ( P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.


2018 ◽  
Vol 120 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Seth W. Holwerda ◽  
Rachel E. Luehrs ◽  
Allene L. Gremaud ◽  
Nealy A. Wooldridge ◽  
Amy K. Stroud ◽  
...  

Relative burst amplitude of muscle sympathetic nerve activity (MSNA) is an indicator of augmented sympathetic outflow and contributes to greater vasoconstrictor responses. Evidence suggests anxiety-induced augmentation of relative MSNA burst amplitude in patients with panic disorder; thus we hypothesized that acute stress would result in augmented relative MSNA burst amplitude and vasoconstriction in individuals with chronic anxiety. Eighteen participants with chronic anxiety (ANX; 8 men, 10 women, 32 ± 2 yr) and 18 healthy control subjects with low or no anxiety (CON; 8 men, 10 women, 39 ± 3 yr) were studied. Baseline MSNA and 24-h blood pressure were similar between ANX and CON ( P > 0.05); however, nocturnal systolic blood pressure % dipping was blunted among ANX ( P = 0.02). Relative MSNA burst amplitude was significantly greater among ANX compared with CON immediately preceding (anticipation) and during physiological stress [2-min cold pressor test; ANX: 73 ± 5 vs. CON: 59 ± 3% arbitrary units (AU), P = 0.03] and mental stress (4-min mental arithmetic; ANX: 65 ± 3 vs. CON: 54 ± 3% AU, P = 0.02). Increases in MSNA burst frequency, incidence, and total activity in response to stress were not augmented among ANX compared with CON ( P > 0.05), and reduction in brachial artery conductance during cold stress was similar between ANX and CON ( P = 0.92). Relative MSNA burst amplitude during mental stress was strongly correlated with state ( P < 0.01) and trait ( P = 0.01) anxiety (State-Trait Anxiety Inventory), independent of age, sex, and body mass index. Thus in response to acute stress, both mental and physiological, individuals with chronic anxiety demonstrate selective augmentation in relative MSNA burst amplitude, indicating enhanced sympathetic drive in a population with higher risk for cardiovascular disease. NEW & NOTEWORTHY Relative burst amplitude of muscle sympathetic nerve activity in response to acute mental and physiological stress is selectively augmented in individuals with chronic anxiety, which is a prevalent condition that is associated with the development of cardiovascular disease. Augmented sympathetic burst amplitude occurs with chronic anxiety in the absence of common comorbidities. These findings provide important insight into the relation between anxiety, acute stress and sympathetic activation.


Sign in / Sign up

Export Citation Format

Share Document