Leukocyte adhesion induced by inhibition of nitric oxide production in skeletal muscle

1995 ◽  
Vol 78 (5) ◽  
pp. 1725-1732 ◽  
Author(s):  
T. Akimitsu ◽  
D. C. Gute ◽  
R. J. Korthuis

Superfusion of rat cremaster muscles with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) elicited significant leukocyte adhesion to postcapillary venules (20- to 30-microns diameter), an effect that was attenuated by pretreatment with L-arginine (an NO precursor) or sodium nitroprusside (SNP) (an exogenous source of NO). In contrast to the effects of pretreatment, addition of SNP or L-arginine to the superfusate 30 min after the initiation of NO synthase inhibition failed to reverse the L-NAME-induced leukocyte adherence. However, this effect was reversed by administration of an anti-CD18 monoclonal antibody or 8-bromoguanosine 3′,5′-cyclic monophosphate 30 min after L-NAME superfusion was initiated. These findings indicate that L-NAME promotes leukocyte adhesion to venular endothelium by a CD18-dependent mechanism in skeletal muscle and suggest that the failure of L-arginine or SNP to reverse L-NAME-induced leukocyte adherence is not due to a defect in signaling events that occur subsequent to activation of guanylate cyclase by NO derived from these agents. Because the simultaneous administration of superoxide dismutase (scavenges superoxide radicals) and SNP or L-arginine, but not superoxide dismutase alone, decreased L-NAME-induced leukocyte adherence, our results suggest that leukocyte adhesion caused by NO synthase inhibition may result in the generation of superoxide.

2001 ◽  
Vol 281 (3) ◽  
pp. H1458-H1464 ◽  
Author(s):  
Zaileen Ebrahim ◽  
Derek M Yellon ◽  
Gary F Baxter

Bradykinin is an important endogenous mediator exerting acute protective effects in the ischemic myocardium. The aims of this study were to investigate whether exogenously administered bradykinin could evoke delayed myocardial protection and to determine whether any protection observed might be dependent on nitric oxide (NO) generation. Conscious rats received bradykinin (40 μg/kg iv) or saline, preceded 15–20 min earlier by the NO synthase inhibitor N ω-nitro-l-arginine methyl ester (l-NAME, 10 mg/kg ip) or saline. Twenty-four hours later, hearts were Langendorff perfused and subjected to 35 min of regional ischemia and 120 min of reperfusion. Infarct size was assessed using tetrazolium staining and expressed as a percentage of the risk zone. Bradykinin pretreatment reduced the infarct-to-risk ratio from 53.5 ± 3.2% to 29.1 ± 4.7% ( P< 0.01). The administration of l-NAME before bradykinin abrogated the delayed protection (infarct size 52.3 ± 5.0%) but alone did not influence infarct size (53.5 ± 4.8%). These results are the first to demonstrate that bradykinin can evoke a delayed (“second window”) enhancement of myocardial tolerance to ischemia, an action that is dependent on the early generation of NO.


1994 ◽  
Vol 77 (6) ◽  
pp. 2519-2521 ◽  
Author(s):  
T. W. Balon ◽  
J. L. Nadler

To determine whether nitric oxide (NO) synthase activity exists in rat skeletal muscle, media from incubated rat extensor digitorum longus muscle preparations were assayed for NO with a chemiluminescent detection system. Although small amounts of NO were detected in media alone, the addition of muscle increased NO concentration in the media by 30-fold. The release of NO into the media diminished over time. Either arginine (10(-6) M), sodium nitroprusside (10(-6) M), or prior electrical stimulation in vivo caused 50–200% increases (P < 0.05) in NO concentration. NG-monomethyl-L-arginine monoacetate (10(-6) M), an NO synthase inhibitor, decreased both basal 2-deoxyglucose transport and NO efflux, indicating that NO may play a role in modulating skeletal muscle carbohydrate metabolism. These data indicate that NO is released from an incubated skeletal muscle preparation and presents the possibility that muscle-derived NO may play an important metabolic role.


1998 ◽  
Vol 76 (2) ◽  
pp. 90-98 ◽  
Author(s):  
N Woodley ◽  
J K Barclay

We tested the hypothesis that extravascular adenosine induces the release of vasodilatory products from endothelial cells lining skeletal muscle vessels. Endothelium-intact (n = 35) and -denuded (n = 5) dog semitendinosus intramuscular arteries were isolated, cannulated, and placed in 100-mL baths containing Krebs-Henseleit bicarbonate buffer (Krebs) at 37°C and gassed with 95% O2- 5% CO2. Each vessel, as well as a parallel tubing segment (avascular control), was perfused at 3.5 ± 0.2 mL/min (inflow pressure 94 ± 2 mmHg; 1 mmHg = 133.3 Pa) with Krebs containing 100 µM phenylephrine, 6% dextran, and 15 units/mL superoxide dismutase. Perfusate from all segments dripped onto endothelium-denuded dog femoral artery rings. The addition of 10 µM acetylcholine to the perfusate to test the functional integrity of endothelium-intact donor segments did not alter resistance in vessel segments or change force in rings. The addition of 100 µM adenosine to the extravascular bath decreased resistance 1.5 ± 0.4 mmHg ·mL-1·min-1in vessel segments but was without effect on downstream rings. When acetylcholine was retested in the presence of extravascular adenosine, a relaxation (16 ± 6%) occurred in rings receiving perfusate from endothelium-intact segments but not endothelium-denuded or tubing segments. This relaxation was eliminated by Nomega-nitro-L-arginine (10 µM), a nitric oxide synthase inhibitor, and was attenuated to 4 ± 1% by 8-phenyltheophylline (10 µM), an adenosine receptor antagonist. Thus adenosine, in conjunction with acetylcholine, acting through a receptor-mediated event, resulted in the release of nitric oxide from the endothelium of perfused intramuscular arteries, indicating the potential for extravascular conditions to influence the release of endothelium-derived products.Key words: acetylcholine, adenosine, endothelium-dependent relaxation, nitric oxide, perfused intramuscular artery.


1996 ◽  
Vol 270 (5) ◽  
pp. H1696-H1703 ◽  
Author(s):  
D. Mitchell ◽  
K. Tyml

Nitric oxide (NO) has been shown to be a potent vasodilator released from endothelial cells (EC) in large blood vessels, but NO release has not been examined in the capillary bed. Because the capillary bed represents the largest source of EC, it may be the largest source of vascular NO. In the present study, we used intravital microscopy to examine the effect of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on the microvasculature of the rat extensor digitorum longus muscle. L-NAME (30 mM) applied locally to a capillary (300 micron(s) from the feeding arteriole) reduced red blood cell (RBC) velocity [VRBC; control VRBC = 238 +/- 58 (SE) micron/s; delta VRBC = -76 +/- 8%] and RBC flux (4.4 +/- 0.7 to 2.8 +/- 0.7 RBC/s) significantly in the capillary, but did not change feeding arteriole diameter (Dcon = 6.3 +/- 0.7 micron, delta D = 5 +/- 7%) or draining venule diameter (Dcon = 10.1 +/- 0.6 micron, delta D = 4 +/- 2%). Because of the VRBC change, the flux reduction was equivalent to an increased local hemoconcentration from 1.8 to 5 RBCs per 100 micron capillary length. L-NAME also caused an increase in the number of adhering leukocytes in the venule from 0.29 to 1.43 cells/100 micron. L-NAME (30 mM) applied either to arterioles or to venules did not change capillary VRBC. Bradykinin (BK) locally applied to the capillary caused significant increases in VRBC (delta VRBC = 111 +/- 23%) and in arteriolar diameter (delta D = 40 +/- 5%). This BK response was blocked by capillary pretreatment with 30 mM L-NAME (delta VRBC = -4 +/- 27%; delta D = 5 +/- 9% after BK). We concluded that NO may be released from capillary EC both basally and in response to the vasodilator BK. We hypothesize that 1) low basal levels of NO affect capillary blood flow by modulating local hemoconcentration and leukocyte adhesion, and 2) higher levels of NO (stimulated by BK) may cause a remote vasodilation to increase microvascular blood flow.


1995 ◽  
Vol 200 (2) ◽  
pp. 137-140 ◽  
Author(s):  
Eiji Kumura ◽  
Toshiki Yoshimine ◽  
Shigeki Kubo ◽  
Satonori Tanaka ◽  
Toru Hayakawa ◽  
...  

1993 ◽  
Vol 264 (4) ◽  
pp. G678-G685
Author(s):  
J. G. Jin ◽  
S. Misra ◽  
J. R. Grider ◽  
G. M. Makhlouf

The mechanism of action of endogenous tachykinins [substance P (SP) and neurokinin A and B (NKA and NKB)] and of receptor-specific tachykinin analogues (SP methyl ester (SPME), [beta-Ala8]NKA-(4-10), and senktide) was examined in circular muscle of guinea pig stomach. Cross-desensitization studies confirmed that SPME and SP interacted with NK-1 receptors, [beta-Ala8]NKA-(4-10) and NKA with NK-2 receptors, and senktide and NKB with NK-3 receptors. NK-1 and NK-3-receptor agonists induced relaxation and stimulated vasoactive intestinal peptide (VIP) release and nitric oxide (NO) production: tetrodotoxin abolished VIP release, NO production, and relaxation, converting the response to NK-1-receptor agonists to contraction; the NO synthase inhibitor NG-nitro-L-arginine (L-NNA) abolished NO production, partly inhibited VIP release (56-64%, P < 0.01), and abolished relaxation; the VIP antagonist VIP-(10-28) partly inhibited NO production (73-74%, P < 0.001) and relaxation (56-58%, P < 0.01); and atropine augmented relaxation by 28-35% (P < 0.01). The pattern of inhibition implied that: 1) relaxation was mediated by VIP and NO; 2) VIP release was partly dependent on NO production, since it was strongly inhibited by L-NNA; and 3) NO was largely produced by the action of VIP on muscle cells, since it was strongly inhibited by VIP-(10-28). NK-2-receptor agonists elicited only contraction that was not affected by tetrodotoxin; these agonists also inhibited VIP release, NO production, and relaxation induced by NK-1- and NK-3-receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document