Branching design of the bronchial tree based on a diameter-flow relationship

1997 ◽  
Vol 82 (3) ◽  
pp. 968-976 ◽  
Author(s):  
Hiroko Kitaoka ◽  
Béla Suki

Kitaoka, Hiroko, and Béla Suki. Branching design of the bronchial tree based on a diameter-flow relationship. J. Appl. Physiol. 82(3): 968–976, 1997.—We propose a method for designing the bronchial tree where the branching process is stochastic and the diameter ( d) of a branch is determined by its flow rate (Q). We use two principles: the continuum equation for flow division and a power-law relationship between d and Q, given by Q ∼ d n, where n is the diameter exponent. The value of n has been suggested to be ∼3. We assume that flow is divided iteratively with a random variable for the flow-division ratio, defined as the ratio of flow in the branch to that in its parent branch. We show that the cumulative probability distribution function of Q, P(>Q) is proportional to Q−1. We analyzed prior morphometric airway data (O. G. Raabe, H. C. Yeh, H. M. Schum, and R. F. Phalen, Report No. LF-53, 1976) and found that the cumulative probability distribution function of diameters, P(> d), is proportional to d −n, which supports the validity of Q ∼ d n since P(>Q) ∼ Q−1. This allowed us to assign diameters to the segments of the flow-branching pattern. We modeled the bronchial trees of four mammals and found that their statistical features were in good accordance with the morphometric data. We conclude that our design method is appropriate for robust generation of bronchial tree models.

2010 ◽  
Vol 24 (09) ◽  
pp. 825-831 ◽  
Author(s):  
CONGJIE OU ◽  
AZIZ EL KAABOUCHI ◽  
JINCAN CHEN ◽  
ALAIN LE MÉHAUTÉ ◽  
ALEXANDRE QIUPING WANG

For a random variable x we can define a variational relationship with practical physical meaning as [Formula: see text], where I is the uncertainty measure. With the help of a generalized definition of expectation, [Formula: see text], we can find the concrete forms of the maximizable entropies for any given probability distribution function, where g({pi}) may have different forms for different statistical methods which include the extensive and non-extensive statistics. Moreover, it is pointed out that this generalized uncertainty measure is valid not only for thermodynamic systems but also for non-thermodynamic systems.


Author(s):  
Olesya Martyniuk ◽  
Stepan Popina ◽  
Serhii Martyniuk

Introduction. Mathematical modeling of economic processes is necessary for the unambiguous formulation and solution of the problem. In the economic sphere this is the most important aspect of the activity of any enterprise, for which economic-mathematical modeling is the tool that allows to make adequate decisions. However, economic indicators that are factors of a model are usually random variables. An economic-mathematical model is proposed for calculating the probability distribution function of the result of economic activity on the basis of the known dependence of this result on factors influencing it and density of probability distribution of these factors. Methods. The formula was used to calculate the random variable probability distribution function, which is a function of other independent random variables. The method of estimation of basic numerical characteristics of the investigated functions of random variables is proposed: mathematical expectation that in the probabilistic sense is the average value of the result of functioning of the economic structure, as well as its variance. The upper bound of the variation of the effective feature is indicated. Results. The cases of linear and power functions of two independent variables are investigated. Different cases of two-dimensional domain of possible values of indicators, which are continuous random variables, are considered. The application of research results to production functions is considered. Examples of estimating the probability distribution function of a random variable are offered. Conclusions. The research results allow in the probabilistic sense to estimate the result of the economic structure activity on the basis of the probabilistic distributions of the values of the dependent variables. The prospect of further research is to apply indirect control over economic performance based on economic and mathematical modeling.


2010 ◽  
Vol 82 (2) ◽  
pp. 513-520 ◽  
Author(s):  
Tibor k. Pogány ◽  
Ram k. Saxena

The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings.


2002 ◽  
Vol 8 (1) ◽  
pp. 43-67 ◽  
Author(s):  
Atilla Dogan ◽  
Pierre T. Kabamba

This paper introduces Modified Altitude- and Dive-Guidance laws for escaping a microburst with turbulence. The goal is to develop a procedure to estimate the highest altitude at which an aircraft can fly through a microburst without running into stall. First, a new metric is constructed that quantifies the aircraft upward force capability in a microburst encounter. In the absence of turbulence, the metric is shown to be a decreasing function of altitude. This suggests that descending to a low altitude may improve safety in the sense that the aircraft will have more upward force capability to maintain its altitude. In the presence of stochastic turbulence, the metric is treated as a random variable and its probability distribution function is analytically approximated as a function of altitude. This approximation allows us to determine the highest safe altitude at which the aircraft may descend, hence avoiding to descend too low. This highest safe altitude is used as the commanded altitude in Modified Altitude- and Dive-Guidance. Monte Carlo simulations show that these Modified Altitude- and Dive-Guidance strategies can decrease the probability of minimum altitude being lower than a given value without significantly increasing the probability of crash.


Radiocarbon ◽  
2016 ◽  
Vol 59 (5) ◽  
pp. 1623-1627 ◽  
Author(s):  
Ron W Reimer ◽  
Paula J Reimer

AbstractA regional offset (ΔR) from the marine radiocarbon calibration curve is widely used in calibration software (e.g. CALIB, OxCal) but often is not calculated correctly. While relatively straightforward for known-age samples, such as mollusks from museum collections or annually banded corals, it is more difficult to calculate ΔR and the uncertainty in ΔR for 14C dates on paired marine and terrestrial samples. Previous researchers have often utilized classical intercept methods that do not account for the full calibrated probability distribution function (pdf). Recently, Soulet (2015) provided R code for calculating reservoir ages using the pdfs, but did not address ΔR and the uncertainty in ΔR. We have developed an online application for performing these calculations for known-age, paired marine and terrestrial 14C dates and U-Th dated corals. This article briefly discusses methods that have been used for calculating ΔR and the uncertainty and describes the online program deltar, which is available free of charge.


2012 ◽  
Vol 706 ◽  
pp. 118-149 ◽  
Author(s):  
Dennis P. M. van Gils ◽  
Sander G. Huisman ◽  
Siegfried Grossmann ◽  
Chao Sun ◽  
Detlef Lohse

AbstractStrongly turbulent Taylor–Couette flow with independently rotating inner and outer cylinders with a radius ratio of $\eta = 0. 716$ is experimentally studied. From global torque measurements, we analyse the dimensionless angular velocity flux ${\mathit{Nu}}_{\omega } (\mathit{Ta}, a)$ as a function of the Taylor number $\mathit{Ta}$ and the angular velocity ratio $a= \ensuremath{-} {\omega }_{o} / {\omega }_{i} $ in the large-Taylor-number regime $1{0}^{11} \lesssim \mathit{Ta}\lesssim 1{0}^{13} $ and well off the inviscid stability borders (Rayleigh lines) $a= \ensuremath{-} {\eta }^{2} $ for co-rotation and $a= \infty $ for counter-rotation. We analyse the data with the common power-law ansatz for the dimensionless angular velocity transport flux ${\mathit{Nu}}_{\omega } (\mathit{Ta}, a)= f(a)\hspace{0.167em} {\mathit{Ta}}^{\gamma } $, with an amplitude $f(a)$ and an exponent $\gamma $. The data are consistent with one effective exponent $\gamma = 0. 39\pm 0. 03$ for all $a$, but we discuss a possible $a$ dependence in the co- and weakly counter-rotating regimes. The amplitude of the angular velocity flux $f(a)\equiv {\mathit{Nu}}_{\omega } (\mathit{Ta}, a)/ {\mathit{Ta}}^{0. 39} $ is measured to be maximal at slight counter-rotation, namely at an angular velocity ratio of ${a}_{\mathit{opt}} = 0. 33\pm 0. 04$, i.e. along the line ${\omega }_{o} = \ensuremath{-} 0. 33{\omega }_{i} $. This value is theoretically interpreted as the result of a competition between the destabilizing inner cylinder rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation. With the help of laser Doppler anemometry, we provide angular velocity profiles and in particular identify the radial position ${r}_{n} $ of the neutral line, defined by $ \mathop{ \langle \omega ({r}_{n} )\rangle } \nolimits _{t} = 0$ for fixed height $z$. For these large $\mathit{Ta}$ values, the ratio $a\approx 0. 40$, which is close to ${a}_{\mathit{opt}} = 0. 33$, is distinguished by a zero angular velocity gradient $\partial \omega / \partial r= 0$ in the bulk. While for moderate counter-rotation $\ensuremath{-} 0. 40{\omega }_{i} \lesssim {\omega }_{o} \lt 0$, the neutral line still remains close to the outer cylinder and the probability distribution function of the bulk angular velocity is observed to be monomodal. For stronger counter-rotation the neutral line is pushed inwards towards the inner cylinder; in this regime the probability distribution function of the bulk angular velocity becomes bimodal, reflecting intermittent bursts of turbulent structures beyond the neutral line into the outer flow domain, which otherwise is stabilized by the counter-rotating outer cylinder. Finally, a hypothesis is offered allowing a unifying view and consistent interpretation for all these various results.


Sign in / Sign up

Export Citation Format

Share Document