Transcriptional profiling of tissue plasticity: role of shifts in gene expression and technical limitations

2005 ◽  
Vol 99 (2) ◽  
pp. 397-413 ◽  
Author(s):  
Martin Flück ◽  
Christoph Däpp ◽  
Silvia Schmutz ◽  
Ernst Wit ◽  
Hans Hoppeler

Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. However, the biological interpretations of expression profiling results critically depend on normalization of transcript signals to mRNA standards before statistical evaluation. A hypothesis is proposed whereby the “fluctuating nature” of gene expression represents an inherent limitation of the test system used to quantify RNA levels. Misinterpretation of gene expression data occurs when RNA quantities are normalized to a subset of mRNAs that are subject to strong regulation. The contention of contradictory biological outcomes using different RNA-normalization schemes is demonstrated in two models of skeletal muscle plasticity with data from custom-designed microarrays and biochemical and ultrastructural evidence for correspondingly altered RNA content and nucleolar activity. The prevalence of these biological constraints is underlined by a literature survey in different models of tissue plasticity with emphasis on the unique malleability of skeletal muscle. Finally, recommendations on the optimal experimental layout are given to control biological and technical variability in microarray and RT-PCR studies. It is proposed to approach normalization of transcript signals by measuring total RNA and DNA content per sample weight and by correcting for concurrently estimated endogenous standards such as major ribosomal RNAs and spiked RNA and DNA species. This allows for later conversion to diverse tissue-relevant references and should improve the physiological interpretations of phenotypic plasticity.

2010 ◽  
Vol 58 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Hiroshi Ohara ◽  
Rumiko Saito ◽  
Satoshi Hirakawa ◽  
Miki Shimada ◽  
Nariyasu Mano ◽  
...  

2017 ◽  
Vol 25 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Kristo Nuutila ◽  
Dharaniya Sakthivel ◽  
Carla Kruse ◽  
Peter Tran ◽  
Giorgio Giatsidis ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Esteban R. Quezada ◽  
Alexis Díaz-Vegas ◽  
Enrique Jaimovich ◽  
Mariana Casas

The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 μM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.


2008 ◽  
Vol 49 (9) ◽  
pp. 1350-1363 ◽  
Author(s):  
Woo Young Bang ◽  
In Sil Jeong ◽  
Dae Won Kim ◽  
Chak Han Im ◽  
Chen Ji ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 574
Author(s):  
Marta Kaczor-Kamińska ◽  
Piotr Sura ◽  
Maria Wróbel

The investigations showed changes of the cystathionine γ-lyase (CTH), 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese (TST) activity and gene expression in the brain, heart, liver, kidney, skeletal muscles and testes in frogs Pelophylax ridibundus, Xenopus laevis and Xenopus tropicalis in response to Pb2+, Hg2+ and Cd2+ stress. The results were analyzed jointly with changes in the expression of selected antioxidant enzymes (cytoplasmic and mitochondrial superoxide dismutase, glutathione peroxidase, catalase and thioredoxin reducatase) and with the level of malondialdehyde (a product of lipid peroxidation). The obtained results allowed for confirming the role of sulfurtransferases in the antioxidant protection of tissues exposed to heavy metal ions. Our results revealed different transcriptional responses of the investigated tissues to each of the examined heavy metals. The CTH, MPST and TST genes might be regarded as heavy metal stress-responsive. The CTH gene expression up-regulation was confirmed in the liver (Pb2+, Hg2+, Cd2+) and skeletal muscle (Hg2+), MPST in the brain (Pb2+, Hg2+), kidney (Pb2+, Cd2+), skeletal muscle (Pb2+, Hg2+,Cd2+) and TST in the brain (Pb2+) and kidney (Pb2+, Hg2+, Cd2+). Lead, mercury and cadmium toxicity was demonstrated to affect the glutathione (GSH) and cysteine levels, the concentration ratio of reduced to oxidized glutathione ([GSH]/[GSSG]) and the level of sulfane sulfur-containing compounds, which in case of enhanced reactive oxygen species generation can reveal their antioxidative properties. The present report is the first to widely describe the role of the sulfane sulfur/H2S generating enzymes and the cysteine/glutathione system in Pb2+, Hg2+ and Cd2+ stress in various frog tissues, and to explore the mechanisms mediating heavy metal-related stress.


Sign in / Sign up

Export Citation Format

Share Document